Serum Leptin level in women with polycystic ovarian syndrome in relation to BMI and hormonal profile.

Thesis

Submitted for the Partial Fulfillment Of Master Degree in Obstetrics and Gynecology

By

Tarek Saleh ELSaid Mohammed

M.B.B.ch., Alexandria University (2003) Registrar of Obstetrics and Gynecology Dar Ismail Maternity Hospital (Alexandria) Ministry of Health

Under Supervision of

Professor Dr. Hazem Fadel ELShahawy

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Sherif Fathey ELMekkawi

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

Acknowledgement

Before and above all, Thanks to Allah to whom I always pray to bless my work.

I am very grateful to **Prof. Dr. Hazem Fadel Elshahawy**, professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continuous help and valuable supervision. I wish to offer him my deepest thanks and gratitude.

I can never forget the great help of **Dr. Sherif Fathi El- Mekkawi,** Lecturer of Obstetrics and
Gynecology, Faculty of Medicine, Ain Shams
University, and his continuous help and valuable
directions have made this work possible; I wish to
express to him my unlimited gratefulness.

Contents

Subject	Page
The protocol	-
Introduction	1
Aim of the Work	5
Review of literature	
Chapter (I): Polycystic Ovary Syndrome	6
<u>Chapter (II):</u> leptin hormone	56
Subjects and methods	78
Results	91
Discussion	102
Summary & Conclusion	106
Recommendations	109
References	110
Appendix	132
Arabic Summary	136

List of Abbreviations

5α-R	5α-reductase
17-HSD	17-hydroxysteroid dehydrogenase
A	Androstenodione
ACTH	Adrenocorticotropic hormone
AgRP	Agouti-related protein
AIDS	Acquired immune deficiency syndrome
ASRM	American Society for Reproductive Medicine
ATP	Adenosine triphosphate
BMI	Body mass index
cAMP	Cyclic adenosine monophosphate
CD ₃	Complement D3
CVD	Cardiovascular disease
DOC	Deoxycorticosterone
DHEAS	Dehydroepiandrosteron Sulphate
DHT	Dihydrotestosterone
E2	Estradiol
ELISA	Enzyme-Linked Immuno Sorbent Assay
ESHRE	European Society of Human Reproduction and
	Embryology
FDA	Food and drug administration
FFAs	Free Fatty Acids
Flu	Flutamide
FSH	Follicle stimulating hormone
GDM	Gestational Diabetes
GH	growth hormone
GnRH	Gonadotropin-Releasing Hormone
HDL	High density lipoprotein
HMG	Human menopausal gonadotropin
HRP	horseradish peroxidase complex
HS	Highly significant
HSD	Hydroxysteroid dehydrogenase

IGF I	Insulin Growth Factor 1
IGF-II	Insulin Growth Factor 2
IGFBP	Insulin Growth Factor Binding Protein
IGT	Impaired glucose tolerance
IL-6ST	Interleukin -6 signal transducer gp130
IL	Interleukin
IFN-γ	Interferon Gamma
IR	Insulin resistance
IRS	Insulin receptor substrate
IVF	In Vitro Fertilization
LDL	Low density lipo-protein
LH	Luteinizing hormone
LOD	Laparoscopic Ovarian Drilling
JAK	Janus kinases
N	Number
NICHD	National Institute of Child Health and Human
	Development
NIH	National Institutes of Health
NPY	Neuropeptide Y
NS	Non significant
Ob	Obesity
OB-R	Leptin receptor
OCs	Oral contraceptives
OHSS	Ovarian hyperstimulation syndrome
P450arom	Aromatase enzyme
PAI-1	Plasminogen-activator inhibitor type 1
PCOS	Polycystic ovarian syndrome
POMC	Pro-opiomelanocortin
PPARγ	Peroxisome proliferatoractivated receptor-γ
ROC	Receiver- operator characteristic
S	Significant

SCC	Side-chain cleavage enzyme
SD	Standard Deviation
SHBG	Sex Hormone- Binding Globulin
SK	Sulfokinase
SL	Sulfolyase
TNFα	Tumor Necrosis Factor-α
SORBS1	Human sorbin and SH3domain-containing 1
StAR	Steroidogenic acute regulatory protein
STAT	signal transducers and activators of transcription
TZD	Thiazolidinedione
UL	Uterine leiomyomata
US	Ultrasound
VLCD	Very low calorie diets
VNTR	Variable number tandem repeats
W/H	Waist-to-hip ratio

List of Tables

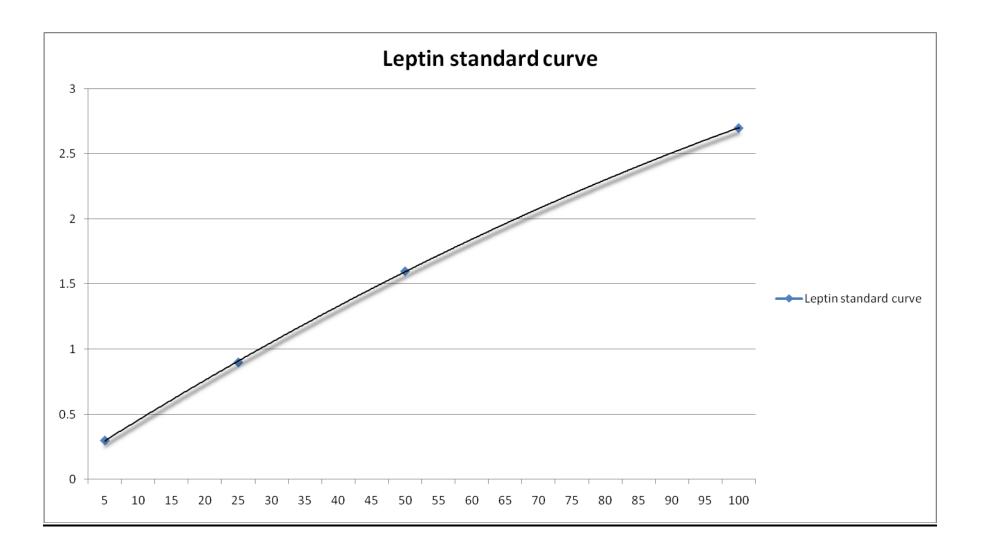
Table No.	Title	Page
Table (1)	Comparison between both groups as regard general data	91
Table (2)	Comparison between both groups as regard anthropometric data	91
Table (3)	Comparison between both groups as regard parity	92
Table (4)	Distribution of the studied cases as regard infertility duration	93
Table (5)	Comparison between both groups as regard hormonal profile	95
Table (6)	Comparison between both groups as regard fasting glucose and insulin level	96
Table (7)	Comparison between both groups as regard serum Leptin	96
Table (8)	Correlation between serum leptin versus general data among the studied cases	97
Table (9)	Correlation between serum leptin versus general data among the studied controls	98
Table (10)	Correlation between serum leptin versus laboratory data among the studied cases	99
Table (11)	Correlation between leptin versus laboratory data among the studied controls	101
Table (12)	Sensitivity, specificity, PPV, NPV and accuracy of leptin	101

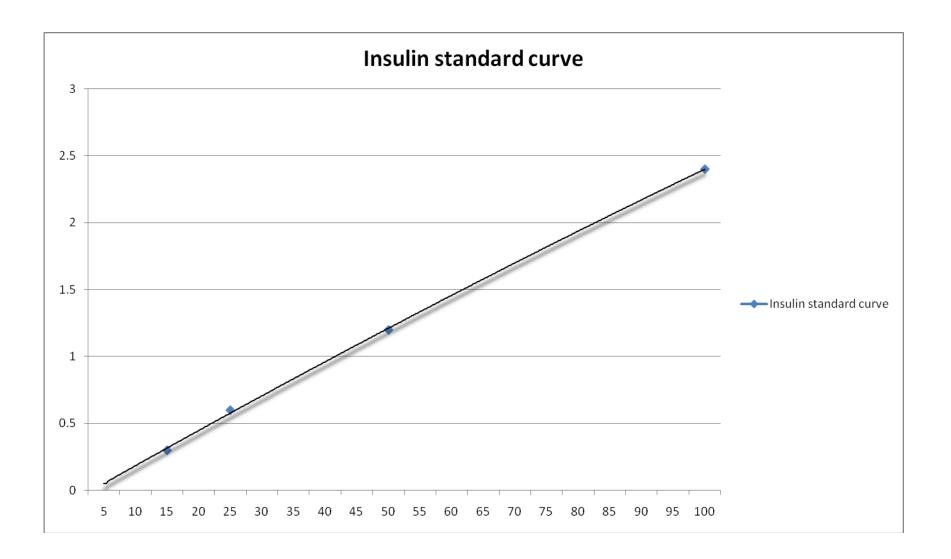
List of figures

Fig. No.	Title	Page					
Fig. 1	The Hypothalamic–Pituitary–Ovarian Axis and the Role of Insulin	10					
Fig. 2	Pathophysiological Characteristics of the Polycystic Ovary Syndrome (PCOS).	12					
Fig. 3	Representative Candidate Genes with Evidence of Linkage, association, or Both, with the Polycystic Ovary Syndrome (PCOS)	16					
Fig. 4	Transvaginal ultrasound of polycystic ovary	18					
Fig. 5	Fig. 5 Venn diagram shows important disorders of reproduction, metabolism and general health that are manifest in women with polycystic ovaries						
Fig. 6	The Ferriman–Gallwey Scoring System for hirsutism.	22					
Fig. 7	The major steroid biosynthetic pathways in the small antral follicle of the ovary	33					
Fig. 8	Major steroid pathways in the adrenal cortex	35					
Fig.9	Conditions to be excluded in diagnosis of PCO	38					
Fig.10	Diagnostic Algorithm for the Polycystic Ovary Syndrome.	40					
Fig.11	Interleukin-4	58					
Fig.12	Primary structure of leptin	58					
Fig.13	Energy scaffolds for IL-2 and a structural model for leptin based on threading alignment with IL-2	59					
Fig.14	Four loop structures join the helices of leptin	60					
Fig 15	Model depicting the control of energy homeostasis and hepatic glucose metabolism by adiposity- and nutrient-related signals	62					
Fig 16	Leptin receptor	63					
Fig 17	Image summarizing the pleiotropic effects of leptin on the neuroendocrine system and in the periphery	66					

Fig 18	Effect of leptin on immune system and the CD4+ T cell	76
Fig 19	Bar chart shows the comparison between both groups in relation to BMI and waste /hip ratio (W/H).	92
Fig 20	Bar chart shows the comparison between both groups in relation to number of parity.	93
Fig 21	Pie chart shows that 55% of the studied cases had duration less than 4 years while 45%were more than 4 years of infertility	94
Fig 22	Bar chart shows the comparison between both groups in relation to serum free testosterone, FSH and LH hormones.	95
Fig 23	Bar chart shows the comparison between both groups in relation to fasting blood glucose and fasting serum insulin	96
Fig 24	Bar chart shows the difference between cases and control groups in relation to serum leptin hormone level	97
Fig 25	Diagram shows the correlation between BMI and leptin hormone in cases group.	98
Fig 26	Diagram shows the correlation between serum fasting glucose level and leptin hormone in case group.	99
Fig 27	Diagram shows the correlation between serum fasting insulin level and leptin hormone in case group.	100
Fig 28	Diagram shows the correlation between serum LH hormone level and leptin hormone in case group	100
Fig 29	Diagram shows the ROC curve for leptin	101

Appendix


GROUP (1): cases of PCOS:


Serial	Name	Age	Age of menarche	Parity	Period of infertility in years	BMI	waste/hip ratio	Glucose	Insulin	Leptin	Testosterone	FSH	LH
1	A.M.A.	20	12	1	2	23.8	0.75	120	15	10	4.5	3	7.5
2	H.H.S.	22	12	0	3	30.8	0.8	100	30	13	5	3	6
3	N.M.A.	22	13	1	2	23.4	0.76	160	10	22	6	4	7
4	N.A.A.	23	12	2	4	31.1	0.81	95	15	15	6.5	2	7.5
5	M.S.F.	28	11	0	6	30.9	0.8	110	40	10	7	2.5	6
6	W.H.M.	29	14	1	5	23.4	0.75	105	65	8	5	2	6.5
7	S.A.R.	30	12	0	6	36.9	0.88	85	50	10	6	3.5	8
8	R.G.L.	21	10	0	2	25.4	0.75	110	30	12	4	3	9
9	E.H.A.	29	11	1	5	25	0.76	122	15	14	5	3	9.5
10	F.E.H.	22	12	0	3	26.6	0.77	141	10	16	4	3	10
11	H.M.M.	28	11	0	5	29.2	0.8	104	15	22	5	4	9
12	N.H.A.	25	12	0	4	29.6	0.81	100	22	20	6	2.5	7.5
13	H.S.E	30	13	2	8	22.7	0.74	96	10	13	5	3	8
14	A.A.M.	32	10	0	9	29.2	0.79	88	8	10	4	2	6.5
15	N.A.M.	32	11	1	7	39	0.86	104	10	14	7	2.5	8
16	A.A.E.	23	12	2	2	29.1	0.79	110	15	30	6	3	9
17	S.A.E.	29	11	0	5	38.7	0.83	112	20	25	4	3	8.5
18	R.S.M.	23	11	0	2	34.2	0.82	132	15	20	6	2.5	6
19	Z.E.M.	23	12	0	2	34.8	0.83	110	10	14	4	2	6.5
20	N.E.M.	21	13	0	2	26.7	0.78	97	20	10	5	2.5	7

Appendix

GROUP (2): control group:

serial	name	Age	Age of menarche	parity	BMI	W/H ratio	Glucose	Insulin	Leptin	Testosterone	FSH	LH
			шепагспе									
1	N.A.E	21	11	2	22.2	0.94	95	10	12	1.5	5.5	5
2	S.H.A	23	13	1	23.4	0.92	100	15	8	1.8	6	5.5
3	S.A.A.	26	12	3	25.5	0.82	65	8	4	2	7	7
4	G.M.F.	30	11	5	23.4	0.91	110	12	10	2	6.5	5
5	F.M.A.	26	13	2	22	0.81	105	35	6	2.5	7	6
6	A.T.M.	23	12	1	30.2	0.78	122	10	13	1.5	5.5	5
7	A.A.S.	30	11	4	22.5	0.9	100	12	10	1.7	6	7
8	M.M.H.	28	13	2	30	0,87	86	10	8	1.5	5.5	6
9	A.M.T.	22	11	1	33	0.84	93	15	12	1.8	6	6.5
10	S.R.H.	29	12	3	27.1	0.76	102	10	9	2	4	4
11	G.M.D.	21	12	1	34	0.99	110	14	11	2.5	4.5	4.5
12	S.M.A.	30	13	4	28	0.94	90	8	10	1.5	6	5
13	H.S.E.	24	14	2	32.2	0.83	122	10	14	1.6	6.5	6
14	A.Z.A	30	14	4	36.2	0.88	88	6	10	2	7	6.5
15	S.T.A.	33	12	5	23.6	0.94	102	12	13	2.5	7.5	7
16	A.I.H.	26	14	4	30.5	0.85	93	10	16	2	6	5.5
17	B.M.S	22	11	2	28.2	0.94	100	8	12	1.5	6.5	6
18	E.A.E.	34	11	3	32.9	0.88	112	12	14	1.5	7	7
19	N.F.B.	30	12	2	35.1	0.98	86	15	10	2	6	5.5
20	M.M.A	28	13	3	30.3	0.78	102	20	8	2.5	7	6

Aim of the work

Aim of the work

Is to find the correlation between Serum Leptin level in women with polycystic ovarian syndrome in relation to their BMI and other hormonal profile (testosterone, FSH, LH and insulin).

Introduction

In 1935 Stein & Leventhal described seven women presenting with oligomenorrhea combined with the presence of bilateral polycystic ovaries (PCO) established during surgery (Stein, Leventhal., 1935).

Polycystic ovary syndrome in its most typical form (the association of hyperandrogenism and chronic anovulation) is one of the most common endocrine disorders, it is estimated to affect >5% of the female population. (**Franks et al., 2008**) Recognising adolescents at risk for PCOS and taking the appropriate steps to reduce circulating androgen levels is critical in reducing the clinical symptomatology of this disorder, and the development of adulthood infertility, diabetes, and metabolic syndrome in patients with PCOS. (**Shayya et al, 2010**).

The clinical and biochemical features are heterogeneous, and there has been much debate as to whether it represents a single disorder or several. In recent years, it has become apparent that the polycystic ovary syndrome not only is the most frequent cause of anovulation and of hirsutism, but is also associated with a characteristic metabolic disturbance (resistance to the action of insulin) that may have important implications for long-term health (**Franks, 1995**).

PCOS is also associated with a metabolic disturbance, central to which is peripheral insulin resistance and compensatory hyperinsulinaemia (**Dunaif**, 1997); (Ehrmann, 2005). These metabolic