

Chemical Studies on the Production and Purification of Phosphoric Acid from Abu-Tartur Phosphate Rocks

A Thesis Submitted by

Mohamed Helmy Taha El-Sayed

M.Sc. Inorganic Chemistry Nuclear Materials Authority

To

Department of Chemistry Faculty of Science Ain Shams University

For

The Degree of Doctorate of Philosophy (PhD)
Chemistry

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet for Submission

Thesis title: Chemical Studies on the Production and

Purification of Phosphoric Acid from Abu-

Tartur Phosphate Rocks

Candidate Name: Mohamed helmy Taha El-Sayed

This thesis has been approved for submission by supervisors:

Prof. Dr./ Sayed T. Abd El-Reheem

Prof. of Electrochemistry Faculty of Science Ain Shams University

Prof. Dr./ Hisham F. Aly

Prof. of Physical Chemistry Hot Laboratories Center Atomic Energy Authority

Prof. Dr./ Mohsen M. Ali

Prof. of Geochemistry Chemistry and Vice-Chairman of Nuclear Materials Authority

Head of Chemistry Department

Prof. Dr. / Maged Shafik Antonious Nakhla

ABSTRACT

Leaching of Abu-Tartur phosphate ore by hydrochloric acid was investigated. The influence of the various factors affecting the process as the particle size of the ore, leaching time, hydrochloric acid concentration, leaching temperature, mixing speed and phosphate ore/HCl ratio have been investigated to estimate the favor phosphate ore leaching process in relation to an impurity.

The leaching kinetic of P_2O_5 and Ca from Abu-Tartur phosphate rock using dilute hydrochloric acid has been investigated. The influence of HCl concentration, liquid/ solid ratio, particle size and temperature were studied in order to explain the leaching kinetic of phosphate rock. The kinetic data show that the leaching process can be described by a shrinking-core model and leaching rate was controlled by the diffusion of reactants through a porous ore. The apparent leaching activation energy for P_2O_5 and Ca were found to equal 14.4 and 22.6 kJ/ mol, respectively.

The produced aqueous acidulate solution from leaching process was neutralized in such a way that a pure dicalcium phosphate (DCP) for animal fodder is precipitated. The different factors affecting on the (DCP) precipitation reaction as reaction time, reaction temperature, mixing stirring speed and acidulate solution/ calcium carbonate, v/ m, ratio were investigated.

DCP precipitate raffinate solution was treated with sulfuric acid in order to recover HCl for reuse in leaching process. The influence of the various factors affecting the process as precipitation time, H_2SO_4 concentration, precipitation temperature, mixing stirring speed and raffinate solution/ H_2SO_4 ratio have been studied.

The produced phosphoric acid from calcium phosphate is more pure than the phosphoric acid produced directly by Abu Tartur phosphate ore. The effect of added $\rm H_3PO_4$ and $\rm H_2SO_4$ concentrations, temperature, mixing time, $\rm H_3PO_4$ / dicalcium phosphate, v/ m, ratio, $\rm H_2SO_4$ / dicalcium phosphate, v/ m, ratio and mixing stirring speed in production process were studied.

ACKNOWLEDGMENTS

First of all, I am deeply thankful to "*Allah*" by the grace of whom the progress of this work was possible.

The author would like thank *Prof. Dr. S. T. Abd El-Reheem*, Professor of Physical and Electrochemistry, Chemistry Department, Faculty of Science, Ain-Shams University, for his help, encouraging and sponsoring this work.

The author extends his sincere thanks and acknowledges his indebtedness to *Prof. Dr. H. F. Aly*, Professor of Physical chemistry, Atomic Energy Authority, for suggesting the subject of this thesis, planning the works, and for his supervision, profound interest in this subject. For teaching me how to think, study and work to get solution for any problem in my all practical life.

Words are not enough to describe my deep thanks to *Prof. Dr. M. M. Ali*, Professor of Geochemistry and vice chairman of Nuclear Materials Authority, for his guidance and supervision in the course of the work, and for his stimulating criticisms and help in the preparation of the manuscript. For his valuable scientific comments that greatly improved the work.

I am very grateful to *Dr. H. S. Gado*, Ass. Professor of Geochemistry, Nuclear Materials Authority, for his helpful collaboration.

Avery special appreciation is due to my *family* not only for their continuous encouragement, but also for their patience and understanding throughout. May Allah bless them in all their endeavors because without their unreserved support, completion of this study would not have been possible.

Special thanks are extended to my dear friends **I. Salama, M.**Farid and M. Nasar for their support, trust, help and well understanding.

My thanks and best wishes extend to all members of the phosphoric acid purification pilot plant, especially to Lecture M. Amin, A. Fawzy, M. El-Maleh, H. Mansour, M. El-maadawy, W. Youssef, M. Badawy, A. Abd El-hamid, A. Abo Raia, A. Mady, A. El Zoughby, O. Roushdy, S. Hamdy and A. Masoud for their support and facilities offered in different ways during the progress of this work.

Mohamed helmy Taha El-Sayed

CONTENTS

ACKNOWLEDGMENTS	i
ABSTRACT	iii
CONTENTS	v
LIST OF FIGURES	X
LIST OF TABLES	xvii
ABBREVIATIONS	xxvii
CHAPTER 1. INTRODUCTION	
1.1 Geology of phosphate rocks	1
1.2 World production of phosphate rocks	5
1.3 Egyptian phosphate rocks	7
1.3.1 Abu-Tartur phosphate rocks	10
1.3.1.1 Minerals and chemical composition of Abu- Tartur	
phosphate rocks	11
1.3.1.2 Upgrading of Abu-Tartur phosphate rocks	12
1.4 Phosphoric acid production	13
1.4.1 Production by thermal process	14
1.4.2 Production by wet process	15
1.4.2.1 Sulfuric acid process	15
1.4.2.1.1 Dihydrate (DH) process	17
1.4.2.1.2 Hemihydrate (HH) process	18
1.4.2.1.3 Recrystallisation processes	18
1.4.2.1.4 Repulping process	19
1.4.2.2 Hydrochloric acid process	22
1.4.2.3 Nitric acid process	24
1.5 Dicalcium phosphate important feed phosphates	26
1.5.1 Different uses of dicalcium phosphate	26
1.6 Kinetic analysis of phosphate rock leaching process	27

1.6.1 Shrinking core model for unchanging size spherical particles	28
1.6.1.1 Diffusion through film controls	29
1.6.1.2 Diffusion through ash layer controls	29
1.6.1.3 Chemical reaction controls	30
1.6.2 Shrinking core model for shrinking spherical particles	30
1.6.2.1 Diffusion through film controls	31
1.6.2.3 Chemical reaction controls	31
1.7 Literatures review	32
1.7.1 Leaching of phosphate ore by organic and inorganic acids	32
1.7.2 Purification of phosphoric acid	36
1.7.3 Production of dicalcium phosphate	39
1.8 Aim of work	42
CHAPTER 2. EXPERIMENTAL	
2.1. Chemical and reagents	44
2.1.1 Chemicals	44
2.1.2 Reagents	45
2.2 Apparatus	48
2.3. Instruments and equipments	48
2.3.1. Measurement instruments	48
2.3.2 Atomic absorption spectrometer	49
2.3.3 Inductively coupled plasma-atomic emission spectrometry	
(ICP-AES)	49
2.3.4 X-Ray Diffraction	49
2.4 Analytical procedures	49
2.4.1 Sample preparation	49
2.4.2 Analytical methods	51
2.4.2.1 Phosphorous determination	51
2.4.2.2 Silicon determination	51
2.4.2.3 Sulfate determination	52
2.4.2.4 Total iron determination	53

	2.4.2.5 Calcium determination	53
	2.4.2.6 Total rare earth elements determination	53
	2.4.2.7 Fluoride determination	54
	2.4.2.8 Chloride determination	54
	2.4.2.9 Uranium determination	55
2.	5 Materials	55
	2.5.1 Preparation of phosphate rock sample	55
	2.5.2 Experimental leaching of phosphate rock by HCl	58
	2.5.3 Experimental kinetic leaching of phosphate rock by HCl	59
	2.5.4 Experimental precipitation of dicalcium phosphate	60
	2.5.5 Experimental recovery of hydrochloric acid	60
	2.5.6 Experimental Production of Phosphoric Acid	61
	CHAPTER 3. RESULTS AND DISCUSSIONS	
3.	1 Hydrochloric acid leaching investigations	63
	3.1.1 Effect of particle size	63
	3.1.2 Effect of reaction time	64
	3.1.3 Effect of acid concentration	66
	3.1.4 Effect of reaction temperature	68
	3.3.5 Effect of mixing stirring speed	70
	3.3.6 Effect of hydrochloric acid/ phosphate rock, v/ m, ratio	71
	3.1.7 Specification of leached acidulate solution	73
3.	2 Kinetics of leaching investigations	75
	3.2.1 Parameters affecting reaction rate	75
	3.2.1.1 Effect of temperature	75
	3.2.1.2 Effect of particle size	78
	3.2.1.3 Effect of hydrochloric acid concentration	81
	3.2.1.4 Effect of hydrochloric acid/ phosphate ore mass ratio	84
	3.2.1.5 Effect of mixing stirring speed	87
	3.2.2 Determination of rate controlling step	89
	3.2.2.1 Effect of temperature	90

	3.2.2.2 Effect of particle size	100
	3.2.2.3 Effect of hydrochloric acid concentration	109
	3.2.2.4 Effect of hydrochloric acid/ phosphate ore mass ratio	119
	3.2.3 Determination of activation energy	128
	3.2.4 Determination of kinetic model equation	131
	3.2.4.1 Particle size fraction	132
	3.2.4.2 Hydrochloric acid concentration	134
	3.2.4.3 Hydrochloric acid/ phosphate ore mass ratio	136
3	3.3 Dicalcium phosphate production	145
	3.3.1 Effect of mixing time	146
	3.3.2 Effect of acidulate solution/ calcium carbonate mass ratio	147
	3.3.3 Effect of reaction temperature	148
	3.3.4 Effect of mixing stirring speed	150
	3.3.5 Developed DCP production flow sheet	151
3	3.4 Hydrochloric acid recovery investigations	
	3.4.1 Effect of reaction time	156
	3.4.2 Effect of sulfuric acid concentration	157
	3.4.3 Effect of sulfuric acid/ precipitate raffinate solution volume	
	ratio	159
	3.4.4 Effect of reaction temperature	161
	3.4.5 Effect of mixing stirring speed	162
	3.4.6 Hydrochloric acid recovery flow sheet	164
3	5.5 Production of phosphoric acid	165
	3.5.1 Effect of stirring time	166
	3.5.2 Effect of phosphoric acid concentration	168
	3.5.3 Effect of phosphoric acid/ calcium phosphate mass ratio	170
	3.5.4 Effect of sulfuric acid concentration	172
	3.5.5 Effect of sulfuric acid/ calcium phosphate mass ratio	174
	3.5.6 Effect of H ₂ O/ calcium phosphate mass ratio	176
	3.5.7 Effect of reaction temperature	177

3.5.8 Effect of mixing stirring speed	179
3.5.9 Specification of produced phosphoric acid	180
SUMMARY AND CONCUSION	188
REFERENCES	196
ARABIC SUMMARAY	
ARABIC ABSTRACT	

ABBREVIATIONS

Abbreviation	Definition
DH	Dihydrate Process
HH	Hemihydrate Process
HRC	Hemihydrate Recrystalization Process
HDH	Hemi-Dihydrate Process
DH/HH	Dihydrate-Hemihydrate Process
D_2EHPA , HD	Di-2 ethyl hexyl phosphoric acid
WPPA	Wet Process Phosphoric Acid
AHLM	Aqueous Hybrid Liquid Membrane
DHBDSA	1,2-dihydroxybenzene 3,5-disulfonic acid
CTAB	Cetyl Trimethyl Ammonium Bromide
SDS	Sodium Dodecyl Sulfate
DCP	Dicalcium Phosphate
MCP	Monocalcium Phosphate
DCPD	Dicalcium Phosphate Dihydrate
τ	Time for Complete Conversion of The Reactant
	Particle to Product (S)
$ ho_{ m B}$	Molar Density (mol m ⁻³)
R	Reactant Particle Radius (m)
b	Stoichiometric Coefficient
K_g	Mass Transfer Coefficient
C_{Ag}	Initial Concentration (mol m ⁻³)
α	Fractional Conversion of Solid Particle
t	Time (min)
D_e	Effective Diffusion Coefficient
K_s	Surface Reaction Rate Constant (mol min ⁻¹)
D	Molecular Diffusion Coefficient (m ² min ⁻¹)
REE	Rear Earth Elements
K	Leaching Rate Constant (m s ⁻¹)
R^2	Correlation Coefficient

K, K, b1, b2, c1, c2, Constants

d1, d2

Ea Activation Energy (J mol⁻¹)
T Absolute Temperature (K)

 R_o Universal Gas Constant (8.314 J k⁻¹ mol⁻¹)

P Particle Size

C Acid Concentration

D Hydrochloric Acid/Phosphate Ore Mass Ratio

LIST OF FIGURES

Figure		Page
1.1	Phosphate production annual rate, million tonns	5
1.2	Locations of phosphate deposits in Egypt	8
1.3	Dependence of calcium sulphate hydrate crystallization on temperature and P_2O_5	16
1.4	Dependence of calcium sulphate Dihydrate / Hemihydrate equilibrium on sulphuric acid	4.6
1.5	concentration Representation of concentrations of reactants and products for the reaction A (g) + $bB(s) \rightarrow solid$	16
	product for a particle of unchanging size	28
2.1	Phosphorus calibration curve	51
2.2	Silicon calibration curve	52
2.3	Sulfate calibration curve	53
2.4	Total REE calibration curve	54
2.5	Uranium calibration curve	55
2.6	Beneficiation flow sheet of Abu-Tartur phosphate rock	56
2.7	The XRD pattern of beneficiated Abu-Tartur phosphate rock sample	57
3.1	Effect of reaction time on P_2O_5 , Ca and Fe recovery % from phosphate ore (particle size: $\leq 1180 \mu m$; v/m ratio: 20 ml/ 5.0 g; rpm: 400; [HCl]: 1.0 M; temperature: 20 °C).	66
3.2	Effect of acid concentration on P_2O_5 , Ca and Fe recovery % from phosphate ore (particle size: \leq 1180 µm; v/ m ratio: 20 ml/ 5.0 g; rpm: 400; time: 4	
3.3	min; temperature: 20 °C). Effect of reaction temperature on P_2O_5 , Ca and Fe recovery % from phosphate ore (particle size: \leq 1180 μ m; v/ m ratio: 20 ml/ 5.0 g; rpm: 400; time: 4 min; [HCl]: 3.0 M).	68 69
	/[]	

	1180 µm; v/ m ratio: 20 ml/ 5.0 g; temperature: 20	71
3.5	°C; time: 4 min; [HCl]: 3.0 M). Effect of hydrochloric acid/ phosphate ore mass ratio on P_2O_5 , Ca and Fe recovery % from phosphate ore (particle size: \leq 1180 μ m; temperature: 20 °C; rpm: 400; time: 4 min; [HCl]: 3.0 M).	72
3.6	Effect of temperature on the P_2O_5 conversion fraction (α) (rpm: 400; [HCl]: 0.1 M; L/S mass ratio: 150 ml/0.1 g; particle size: 150-63 μ m).	77
3.7	Effect of temperature on the Ca conversion fraction (α) (rpm: 400; [HCl]: 0.1 M; L/S mass ratio: 150	
3.8	ml/0.1 g; particle size: 150-63 μ m). Effect of particle size on the P_2O_5 conversion fraction (α) ([HCl]: 0.1 M; L/S mass ratio: 150	77
	ml/0.1 g; rpm: 400; temperature: 20 °C).	80
3.9	Effect of particle size on the Ca conversion fraction (α) ([HCl]: 0.1 M; L/S mass ratio: 150 ml/0.1 g;	90
3.10	rpm: 400; temperature: 20 °C). Effect of hydrochloric acid concentration on the P ₂ O ₅ conversion fraction (α) (particle size: 150-63 μm; L/S mass ratio: 150 ml/0.1 g; rpm: 400;	80
3.11	temperature: 20 °C). Effect of hydrochloric acid concentration on the Ca conversion fraction (α) (particle size: 150-63 μm; L/S mass ratio: 150 ml/0.1 g; rpm: 400; temperature: 20 °C).	83 83
3.12	Effect of hydrochloric acid to phosphate ore mass ratio on the P_2O_5 conversion fraction (α) (particle size: 150-63 μ m; [HCl]: 0.1 M; rpm: 400; temperature: 20 °C).	86

Effect of mixing stirring speed on P_2O_5 , Ca and Fe

recovery % from phosphate ore (particle size: ≤

3.4