Intravitreal implants in management of posterior segment diseases

Essay

Submitted for Partial Fulfillment of Master Degree In ophthalmology
By

Mohammad Saleh Mohammad Sallam

M.B.B.Ch

Supervised by

Professor: Mohammad Omar Rashed

Professor of ophthalmology
Faculty of Medicine, Ain Shams University

Dr. Mohammad Moghazy Mahgoub

Ass.professor of ophthalmology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

الجسيمات المزروعه داخل الجسم الزجاجي في علاج أمراض القطعة الخلفية للعين

رسالة توطئة للحصول على درجة الماجستير في طب وجراحة العيون

مقدمة من الطبيب محمد سالح محمد سالح بكالوريوس الطب والجراحة

تحت إشراف أ.د.محمد عمر راشد

استاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

د محمد مغازی محجوب

استاذ مساعد طب وجراحة العيون كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2013

List of Abbreviations

BCVA Best corrected visual acuity

BRB Blood retinal barrier

CME Cystoid macular edema

CMV Cytomegalo virus

3D 3 dimensional

DM Diabetes Mellitus

DME Diabetic macular edema

DNA Double stranded nucleic acid

EBV Epstein barr virus

ECT Encapsulated cell technology

EVA Ethylene vinyl acetate

FAME Flucinolone acetonide in diabetic macular edema

FDA Food and drug administration

Fig Figure

Gd-DTPA Gadolinium diethylene triamino pentaacetic acid

H-110 5-hexadecanoyl amino fluorescein

HAART Highly active anti-retroviral therapy

HPMC Hydroxy propyl methyl cellulose

IOP Intraocular pressure

IVMP Intravenous methyl prednisolone

MRI Magnetic resonance imaging

PGA Polyglycolic acid

PLA Polylactic acid

PLGA Polylactic co-glycolic acid

PVA Polyvinyl alchol

List of Abbreviations

RPE Retinal pigment epithelium

STRIDE Sustained triamcilinone release for inhibition of

Diabetic macular edema

TA Triamcilinone

USA United States of America

VA Visual acuity

VEGF Vascular endothelial growth factor

VZV Varicella zoster virus

List of Contents

List of Abbreviations	<u></u>
2051 03 110010100000	
<i>List of Figures <u>I</u></i>	<u> </u>
List of tables	<u>'I</u> <u>II</u>
Chapter one:	
Anatomical and physiological considerations 1	
• The vitreous humor	
• The Structure of the retina 4	
• Retinal pigment epithelium (RPE) 5	
• The blood-ocular barrier 6	
Chapter two:	
Methods of studying ocular pharmacokinetics	
• Ocular pharmacokinetics using convential methods 9	
Ocular pharmacokinetics using MRI	
• mathematical eye model and lumped pharmacokinetic 23 models	
Chapter three: 27	
Methods of ocular drug delivery	
1.Topical administration	
2. Systemic administration	
3. Periocular administration	
<i>4. Intravitreal injections</i>	

List of Contents

5. Sustained-release implants	
Other methods of ocular drug delivery	38
1. Particulate Drug Delivery Systems	38
2. Noninvasive Iontophoretic Ocular Drug Delivery Device (Visulex ®)	40
3. Ultrasound-mediated microbubble drug delivery	43 45
5. Microcannulation of the suprachoroidal space	49
Chapter four:	51
Specialized intravitreal implantable technologies	
Types of sustained release drug delivery devices	52
Nonbiodegradable implants	55
Biodegradable implants	56
Advantages and disadvantages of implantable intravitreal drug delivery systems	58
Specialized intravitreal implantable technologies for treatment of posterior segment eye disease	59
1-Vitrasert	59
2-Retisert	66
3- Iluvien® / Medidur®	72
4-Ozurdex, (formerly Posurdex)	76

List of Contents

5-Scleral Plug Devices	
6-Helical Device (I-Vation® technology)	81 85
7-Encapsulated cell Technology	88
Other applications of intravitreal implants	92
1-Sustained release intravitreal cyclosporin implant	92
2-Angiostatic agents	94
3-Sustained release of calcium channel blockers	95
<i>Summary</i>	97
References	101
Arabic summary	114

List of Figures

Fig. No	Description	page
1	Vitrous molecular structure	3
2	The neural retina	4
3	RPE is a Single layer of roughly hexagonal cells	5
4	In vitro release rate of H-110	11
5	Florescence intensity distribution of H-110 released from a 15% HPMC / 30% H-110 intravitreal implant 1 hour post implantation	12
6	Florescence intensity distribution of H-110 released from a 15% HPMC / 30% H-110 intravitreal implant 3 hours post implantation	13
7	Florescence intensity distribution of H-110 released from a 15% HPMC /30%H-110 intravitreal implant 1day post implantation	13
8	In vitro release of Gd-DTPA from episcleral (circle) and intravitreal (square) implants	16
9	MRI scan (coronal images) with an intravitreal implant inserted through the equator of the right eye.	18

List of Figures

<i>10</i>	Magnified views of the region of the posterior vitreous,	19
	retina, choroid, and sclera (shown in Fig.9)	
11	MR images of rabbit head with an intravitreal implant in	21
	the right eye	
<i>12</i>	Concentration distribution of Gd-DTPA from the lens to	22
	the retina in invivo MRI experiment	
13	Concentration distribution of Gd-DTPA	23
14	Geometry of mathematical eye model	24
15	Mathematical eye model study results	25
16	Concentration distribution of Gd-DTPA at 1.50 hour,	
	2.68 hour, 4.12 hour, and 7.67 hour post implantation	26
<i>17</i>	Scheme of nanoparticles and microparticles	39
18	A unique dose controller and drug applicator	
	(nanoparticles)	42
19	Diagram showing Structure of a microbuble	43
20	Images of cross-linked thermoresponsive gels	48

List of Figures

21	Red tip of the cannula in the suprachoroidal space of a	50
22	pig eye using a wide-angle indirect view Ganciclovir implant (Vitrasert)	59
23	Vitrasert implant, 1=PVA head, 2=PVA and EVA coat	63
24	Illustrative diagram of Retisert implant	69
25	Schematic implantation of retisert implant	70
26	Medidur implant	72
27	Location of Iluvien insert in inferior vitreous	75
28	Ozurdex implant	77
29	Illustration of the device (Ozurdex)	82
30	Intrascleral discs	84
31	Illustrated diagram of I-vation	85
32	I-vation site of implantation	87
33	Encapsulated Cell Technology (ECT)	89

List of Tables

Table No.	Description	page
1-	MRI methods for studying ocular drug delivery	15
2-	Current and future sustained release drug delivery devices	53

Acknowledgements

First of all, I thank God for without his help I couldn't have accomplished this work.

I would like to express my thanks and gratitude to Professor: *Mohammad Omar Rashed*, Professor of ophthalmology, Faculty of Medicine, Ain Shams University.

I would also like to express my thanks and deep appreciation to Assistant Prof. *Mohammad Moghazy Mahgoub*, assistant professor of ophthalmology, Faculty of Medicine, Ain Shams University, for his helpful advice, guidance and support.

Finally, I would like to thank my family for their caring and support.

Introduction

The unique anatomy and physiology of the eye renders it difficult to achieve an effective drug concentration at the target site. Therefore, efficient delivery of a drug past the protective ocular barriers accompanied with minimization of its systemic side effects remains a major challenge (*Rupenthal and Alany*, 2007).

Diseases affecting the posterior segment of the eye are difficult to treat and take longer to combat by employing conventional topical or systemic drug delivery (*Maurice*, 2001).

Research has been directed at specialized drug delivery technologies to the tissues of the posterior segment of the eye (*Visor*, 1994).

Pharmacokinetics describes the quantitative relationship between administered dose and tissue concentration over time, it is an important tool in drug development. To optimize drug concentration at the target sites, pharmacokinetic studies are useful (*Kim et al., 2004*).

Convential techniques as fluorescein, MRI and 3D simulation eye models are methods of assessing ocular drug distribution (**Li et al.**, **2008**).

A variety of approaches for drug delivery to the posterior segment of the eye have been explored over the last few decades. These approaches include direct intravitreal injections, drug loaded microparticle carriers as microspheres, nanospheres, and liposomes, transscleral drug delivery devices, and intravitreal devices using polymers (**Davis et al., 2004**). The pharmaceutical world is becoming more and more aware of intraocular drug delivery challenges, and revolutionary therapeutic advances are being invented and implemented which may have the potential to vastly improve patient care and quality of life. Among these most promising developments are intravitreal drug delivery devices designed to deliver drugs with precision directly to the vitreous, retina, and choroid (*Ashton et al.*, 2000).

An intraocular device can be designed as either biodegradable or non-biodegradable (*Choonara et al., 2010*).

With the continued development of more potent drugs combined with research into novel delivery methods, there is a realistic hope that optimal therapeutic drug delivery for diseases of the posterior segment will be available in the near future (*Shalin et al.*, 2010).

AIM OF WORK

To review types and indications of <u>intravitreal</u> implants in management of posterior segment diseases with highlighting of the expected benefits versus potential complications.