

Study the Effect of Some Additives on Painting Efficiency To Protect the Petroleum Equipment

Thesis

Submitted to

Chemistry department

Faculty of Women for Arts, Science and Education

In the Fulfillment of the Requirements for

M.Sc. Degree in

Inorganic Chemistry

By

AHMED ABDEL AZIZ EBRAHIM MOSTAFA

B.Sc. (1997)

Under supervised of

Prof.Dr. Nadia G. Kandile Prof.Dr. Ossama M.Abo-Elenien

Prof. of Organic Chemistry Prof. of Applied Inorganic

Chemistry Department

Faculty of Women for Arts, Science Egyptian Petroleum Research Institute

and Education

(2010)

Study the Effect of Some Additives on Painting Efficiency To Protect the Petroleum Equipment

Thesis submitted to: Chemistry Department

In the fulfillment for: MSc. Degree in inorganic chemistry

By

AHMED ABDEL AZIZ EBRAHIM MOSTAFA

Thesis supervisors	Thesis approved
Prof. Dr. Nadia G. Kandile	•••••••••••••••••••••••••••••••••••••••
Prof Dr Ossama M Aho-Flenien	

Qualification

Name : Ahmed Abdel Aziz Ebrahim Mostafa

Scientific Degree : B.Sc.

Department : Inorganic Chemistry

College : Faculty of Science

University : Ain Shams University

B.Sc. Graduation : 1997

A CKNOWLEDGEMENT

Firstly, the author expresses his sincere gratitude to all those who taught chemistry and still do, words will be undeniably unjust.

With respect and true feeling the author has to thank Prof. Dr. Nadia G. Kandile Professor of Organic Chemistry, Faculty of Women for Arts, Science and Education for her endless effort to make this research fruitful, practical and acceptable.

The author is deeply indebted to Prof. Dr. **Ossama Mahmoud Abo-Elenien**, Professor of applied inorganic chemistry, petroleum application department, Egyptian Petroleum Research Institute, for suggesting the subject of the study and close supervision throughout all steps of the present work and for kind directions, which made the work practical and acceptable.

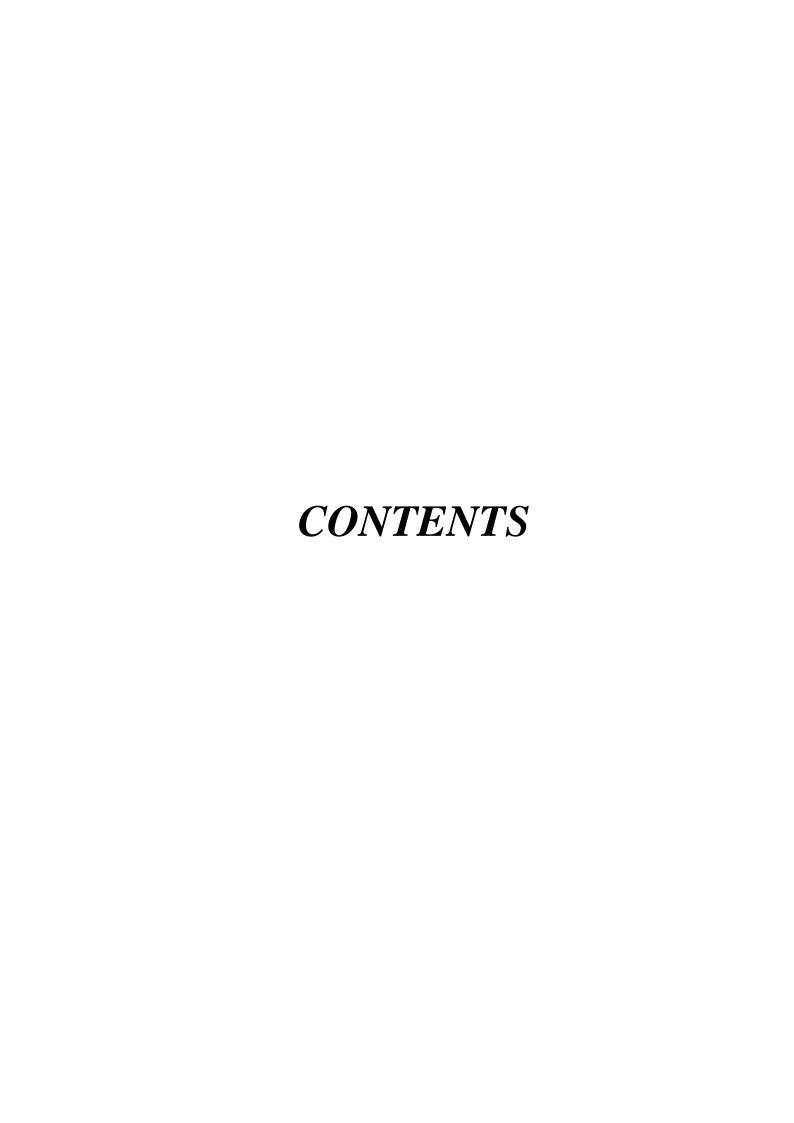
The author is extremely thankful to Prof. Dr. Nevin Omar Shaker Prof Dr. of the petroleum application department, Egyptian Petroleum Research Institute, for her support during all steps of practical tests and continuous supervision, during all phases of this work.

Finally the author thanks all the members of his family and colleagues for their continuous encouragement and support.

Dedication

This Thesis Is Dedicated

To


My Father and My Mother

To

My Wife and My Sons

To

My Sisters

Contents

Ser. No	Title	page
	Summery	
	<u>CHAPTER I</u>	
	Introduction	1
I-1	Principles of Protection of the Metals Surfaces	2
I-2	Corrosion Phenomena	3
I-2-1	Mechanism of corrosion	3
I-2-2	Effect of environmental condition on the surface of metal	5
I-2-3	Corrosion Problem	6
I-2-4	Contamination of the products	7
I-2-5	Effect on safety and reliability	9
I-2-6	Economic consideration	9
I-2-7	Different processes for protection	10
I-2-8	Corrosion protection	11
I-2-9	Cathodic protection	12
I-2-10	Hot dip galvanizing for corrosion protection	13
I-2-11	Protection of petroleum and petrochemical plants by paintings	13
I-3	Historical Review	14
I-3-1	Pigments and fillers	21
I-3-2	Maintenance of paint	33
I-3-3	Curing agent	34

I-3-3-1	Curing by radiation	34
I-3-3-2	Curing by moisture	37
I-3-3-3	Curing by room temperature	38
I-3-3-4	Curing by heat	39
I-3-3-5	Curing by chemical reagents	41
	CHAPTER II	
II	Experimental Work	45
II-1	Characteristic properties of the synthesized compound	47
II-1-1	Infra-red analysis (FT-IR)	47
II-1-2	Nuclear Magnetic Resonance 1 HNMR	47
II-2	P Preparation of poly amide	48
II-2-1	Preparation of polyamide citrate binder A-1	48
II-2-2	Synthesis of polyamide urethane citrate	48
II-2-3	Preparation of polyamide Azelate binder A-1	48
II-2-4	Synthesis of polyamide urethane Azelate	49
II-3	Preparation of the painting formula	49
II-4	Preparation the surfaces of metal specimens	50
II-5	The optimization steps to form the polyamide coating	50
II-6	The characterization techniques	51
II-6-1	Physical properties	51

II-6-1-1	Wet film thickness (WFT)	51
II-6-1-2	Dry film thickness (DFT)	51
II-6-1-3	Adhesion technique	52
II-6-1-3-1	Peel test	52
II-6-1-3-2	Burnishing test	53
II-6-1-4	Thermal cycling test	53
II-6-1-5	Pinhole test according to ASTM (D-5162-91)	53
II-6-2	Mechanical properties	54
II-6-2-1	Bending test	54
II-6-2-2	Pencil hardness test of polyamide coating	54
II-6-2-3	Impact techniques	55
II-7	Evaluation the effect of organic solvent	56
II-8	Effect of methyl ethyl ketone (MEK)	56
II-9	Evaluation of the formed films as a corrosion protection	56
II-9-1	Synthetic 3.5 % NaCl at ambient temperature	57
II-9-2	H ₂ SO ₄ at concentration 10 % at ambient temperature	57

CHAPTER III

III	Results and Discussion	58
III-1	Preparation of polyamide citrate binder (A-1)	59
III-2	Synthesis of polyamide urethane citrate	63
III-3	Preparation of polyamide Azelate binder (A-2)	66
III-4	Synthesis of polyamide urethane Azelate	70
III-5	Chemical composition of the painting formula E_0 to E_7	73
III-6	Studies of optimization for curing agent	7 4
III-7	Physical and mechanical properties of the formed films on carbon steel.	76
III-7-1	physical properties	76
III-7-1-1	Visual inspection	76
III-7-1-2	Normalizing calculating of the wet and dry film thickness formed on carbon steel specimens surface	79
III-7-1-3	Measuring wet and dry films thickness data	82
III-7-1-4	Adhesive forcing of the formed dry films with the surface of carbon steel specimens	83
III-7-1-5	Holiday (pinhole) detection of the formed dry films on the surface of carbon steel specimens	85
III-7-1-6	Thermal cycling test for the formed dry films from polyamide compounds A-1 and A-2	86

III-7-1-7	Volatile of organic compounds VOC	90
III-7-2	Mechanical Properties	90
III-7-2-1	Hardness data	90
III-7-2-2	Impact data	91
III-7-2-3	Pinhole(Holiday) data	91
III-7-2-4	Bending data	92
III-7-2-5	Comprehensive conclusion deduced from the mechanical data for the films formed from formula $E_0\hbox{-} E_7$ of two binder A-1 and A-2 compounds	92
III-7-2-6	Inorganic pigments	93
III-7-2-7	The effect of curing agent TDI on the behavior of the formed dry films	94
III-7-3	Chemical properties	95
III-7-3-1	Effect of mixture of benzene, toluene and xylene	95
III-7-3-2	Effect of methyl ethyl ketone (MEK) and chloroform on the formed dry polyurethane films	98
III-8	Evaluation the effect of aggressive media on the formed dry films.	99
III-8-1	Effect of 10 % H ₂ SO ₄ ASTM (D-468 and 610)	99
III-8-2	Evaluation the effect of the synthetic (3.5% NaCl) water on the formed dry polyamide-urethane films on the surface of carbon steel alloy specimens Mechanism	102
III-9	Mechanism	
III-10	Conclusion	

CHAPTER VI

VI-1	List of figures	
VI-1-1	Fig (1): FT-IR of polyamide citrate (A-1)	50
VI-1-2	Fig (2): ¹ HNMR of polyamide citrate (A-1)	5 1
VI-1-3	Fig (3): FT-IR of poly (amide urethane) citrate	53
VI-1-4	Fig (4): ¹ HNMR of Poly (amide urethane) citrate	54
VI-1-5	Fig (5): FT-IR of polyamide Azelate (A-2)	57
VI-1-6	Fig (6): ¹ HNMR of polyamide Azelate (A-2)	58
VI-1-7	Fig (7): FT-IR of Poly (amide urethane) Azelate	60
VI-1-8	Fig (8): ¹ HNMR of Poly (amide urethane) Azelate	6 1
VI-2	List of tables	
VI-2-1	Table-1- Characterization of row materials	
VI-2-2	Table -2 Chemical composition of Formula for synthetic polyamide compounds A-1 and A-2	62
VI-2-3	Table -3 Data of the optimum condition for the curing agent against curing time for A-1 formula at ambient condition	63
VI-2-4	Table -4 Data of the optimum condition for the curing agent against curing time for A-2 formula at ambient condition	64
VI-2-5	Table -5 Data of the visual inspection after application of the painting films for formed from formula E0-E7 for polyurethane A-1 compound	60

VI-2-6	Table -6 Data of the visual inspection after application of the painting films for formed from formula E0-E7 for polyurethane A-2 compounds	67
VI-2-7	Table-7 The physical measurements for each formed films from polyamide A-1 wet and dry films at ambient condition and using curing agent TDI	69
VI-2-8	Table-8 The physical measurements for each formed films from polyamide A-2 wet and dry films at ambient condition and using curing agent TDI	70
VI-2-9	Table - 9 Measuring wet and dry films thickness data of formed films from formula E0- E7 of compound A-1	71
VI-2-10	Table - 10 Measuring wet and dry films thickness data of formed films from formula E0- E7 of compound A-2	72
VI-2-11	Table-11 The physical and mechanical properties of the dry films formed from E0-E7 of compound A-1	73
VI-2-12	Table-12 The physical and mechanical properties of the dry films formed from E0-E7 of compound A-2	74
VI-2-13	Table-13 Thermal cycling test (stability) of the dry films formed from formula E1-E7 of A-1 at temperature ranged from 50 to 400°C	77
VI-2-14	Table-14 Thermal cycling test (stability) of the dry films formed from formula E1-E7 of A-2 at temperature ranged from 50 to 400°C	78
VI-2-15	Table:15 Visual inspection of the effect of the organic solvent (Toluene, Benzene, Xylem) on the dry films formed from formula E0-E7 for A-1	85
VI-2-16	Table:16 Visual inspection of the effect of the organic	86

solvent (Toluene, Benzene, Xylene) on the dry films form from formula E0-E7 for A-2	ed
II OIII IOI III III EU-E / IOI A-2	

VI-2-17	Table-17 Effect of (MEK) and chloroform on the formed dry films from formula E0 – E7 for A-1	87
VI-2-18	Table-18 Effect of (MEK) and chloroform on the formed dry films from formula $E0-E7$ for A-2	87
VI-2-19	Table-19 Data of corrosion tests of the dry films formed from polyamide A-1 on the specimens in 10 % H ₂ SO ₄ for 50 days	89
VI-2-20	Table-20 Data of corrosion tests of the dry films formed from polyamide A-2 on the specimens in 10 $\%~H_2SO_4$ for 50 days	90 92
VI-2-21	Table-21 Data of corrosion tests of the dry films formed from polyamide A-1 on the specimens in sea water for 48 days	92
VI-2-22	Table-22 Data of corrosion tests of the dry films formed from polyamide A-2 on the specimens in sea water for 48 days	92

CHAPTER V

V REFERENCE 110

