The Value of Cerebro-Placental Ratio as a Predictor of Neonatal Outcome in Post-Date Pregnancies

Thesis

Submitted in complete fulfillment of M.Sc. degree in Obstetrics and Gynecology

By Layali Hussein Abd El Hameed Hafez

(M.B,B.Ch.Cairo University)

Under supervision of

Prof. Dr. Mohamed Roshdy Mahmoud

Professor of Obstetrics and Gynecology Cairo University

Dr. Sherif Mohamed Maher Negm

Assistant Professor of Obstetrics and Gynecology Cairo University

Dr. Ahmed Mohamed Maged

Lecturer of Obstetrics and Gynecology Cairo University

> Faculty of medicine Cairo University 2010

Abstract

Post-date pregnancies account for about 5-10% of the deliveries and are known to be associated with increased risk for prenatal complications. The mechanism of fetal complication associated with post dated pregnancy has attributed to progressive placental insufficiency particularly in the presence of decreased amniotic fluid.

Few studies had looked into the Doppler blood flow changes in postdated pregnancies. Some demonstrated redistribution of blood flow in the fetal cerebral circulation in postdated pregnancies with adverse prenatal outcome, and such brainsparing phenomenon is thought to result in oligohydramnios. However, others reported insignificant difference in Doppler indices for postdated pregnancies with or without oligohydramnios.

Key Words:

Post-date pregnancy, Doppler examination, Fetal Circulation, Fetal growth.

Acknowledgement

First of Thanks to ALLAH for helping me throughout my life.

My deepest thanks and sincere gratitude to **Professor**; **Mohamed Roshdy Mahmoud** Professor of Obstetrics & gynecology Faculty of
Medicine, Cairo University, for his generosity, kindness and great support.

I also wish to express my greatest appreciation to Assistant Professor, Sherif Mohamed Maher Negm. Assistant Professor of Obstetrics & gynaecology Faculty of Medicine, Cairo University for his enthusiastic encouragement throughout the study, step by step advice, ceaseless effort, and honesty.

I owe special thanks to **Dr. Ahmed Mohamed Maged**, Lecture of Obstetrics & gynaecology Faculty of Medicine, Cairo University, for his great help, support, thorough and meticulous revising of the work and creative ideas.

Finally, I am so grateful, and I am deeply indebted to my **family** for their loving, kindness and encouragement throughout this work which I dedicate to them.

Table of contents

•	List of abbreviations	I
•	List of Tables	III
•	List of Figures	V
•	Introduction	1
•	Aim of the work	3
•	Review of Literature	4
	1) Post-date pregnancy	4
	2) Doppler examination	32
	3) Fetal Circulation	67
	4) Fetal growth	87
•	Patients and Methods	116
•	Results	124
•	Discussion	133
•	Summary & Conclusion	139
•	References	142
•	Arabic summary	

LIST OF ABBREVIATIONS

AC : Abdominal Circumference

AFI : Amniotic Fluid Index

AGA : Appropriately Grown For Gestational Age

BMI : Body Mass Index

BPD : Biparietal Diameter

BPP : Biophysical Profile

BPS : Biophysical Profile Scoring

CS: Caesarean Section

C/P : Cerebro-Placental Ratio

CNS : Central Nervous System

CRH : Corticotrophin Releasing Hormone

CRL : Crown Rump Length

CTG : Cardiotocography

CW : Continuous Wave

EDD : Expected Date Of Delivery

EFW : Estimated Fetal Weight

FHR : Fetal Heart Rate

FL: Femur Length

FOD : Fronto- Occipital Diameter

GA : Gestational Age

GROW: Gestation Related Optimal Weight

HC: Head Circumference

HPA : Hypothalamic-Pituitary- Adrenal Axis

ICC: Immediate Clamping Of Umbilical Cord

IVC : Inferior Vena Cava

LBW : Low Birth Weight

LGA : Large For Gestational Age

LMP : Last Menstrual Period

MCA PI : Middle Cerebral Artery Pulsatility Index

MCA RI : Middle Cerebral Artery Resistance Index

NST : Non Stress Test

PG : Prostaglandins

PI : Pulsatility Index

PW: Pulsed Wave

RI : Resistance Index

S/D : Systolic/Diastolic Ratio

SD : Standard Deviation

SGA : Small For Gestational Age

UA PI : Umbilical Artery Pulsatility Index

UA RI : Umbilical Artery Resistance Index

List of Tables

Table No.	Title	Page
Table 1-1	Apgar scoring system	17
Table 2-1	Fluid movement into and out of the amniotic cavity	24
Table 3-1	Predicted Menstrual Age for Biparietal Diamenter	93
	(BPD) Measurements	
Table 4-1	Variability (±SD) in Predicting Menstural Age from	95
	Sonographic Measurments (14 to 20 Weeks)	
Table 5-1	Variability (2±2 SD) in Predicting Menstrual Age in the	97
	Second Half of Pregnancy	
Table 6-1	Predicted Menstrual Age for Head Circumference	98
	Measurements (8.5-36.0)	
Table 7-1	Predicted Menstrual Age for Abdominal Circumference	101
	Measurements.	
Table 8-1	Predicted menstrual age for Femur Length	103
	measurements	
Table 9-1	Birth weight percentiles at term	104
Table 10-1	Equations for estimation of fetal weight	105
Table 11-1	Equations for estimation of fetal weight	106
Table 12-1	Equations for estimation of fetal weight	107
Table 1-2	Mean and standard deviation of age, dated gestational	121
	age, BMI, in both study and control groups	
Table 2-2	Distribution of parity, smoking & previous past	122
	obstetric history of postdates pregnancies in control and	
	study groups	

Table No.	Title	Page
Table 3-2	Mean and standard deviation in both BPD, FL, AC	123
	based gestational age and EFW in both study and	
	control group	
Table 4-2	Distribution of amniotic fluid volume based on	125
	ultrasound assessment in both study and control groups	
Table 5-2	Distribution of induction of labor in study and control	126
	groups	
Table 6-2	Distribution of the mode of delivery in study and	126
	control groups	
Table 7-2	Presence of meconium stained liquor at the time of	127
	delivery in study and control groups	
Table 8-2	Mean and standard deviation of MCA RI, MCA PI, UA	128
	RI, UA PI, CA/UA RI in both study and control groups	
Table 9-2	Mean and standard deviation of apgar score at 1 minute	130
	and 5 minutes in both study and control groups	
Table 10-2	Sensitivity and specificity of MCA/UA RI in the prediction of neonatal outcome	132

List of Figures

Fig. No	Title	Page
Figure 1-1	Illustration of the Doppler Effect	36
Figure 2-1	The Relation between the ultrasound beam and the flow	38
Figure 3-1	Example of aliasing and correction of the aliasing	44
Figure 4-1	Spectrum parts used in the calculation of S/D ratio, RI	48
	PI	
Figure 5-1	Normal pregnancy development of the uterine artery	57
Figure 6-1	Normal flow velocity waveforms from the umbilical	58
	vein (top) and artery (bottom) at 32 weeks of gestation.	
Figure7-1	Normal pregnancy development of the umbilical artery	59
Figure 8-1	Flow velocity waveforms of the arteries of the circle of	64
	Willis. The values indicate the pulsatility index.	
Figure 9-1	Flow velocity wave forms of the middle cerebral artery	65
	in appropriate-for-gestaional-age (AGA) fetuses at	
	different gestational ages	
Figure 10-1	Pulsatility index (left) and mean blood velocity (right)	66
	in the fetal middle cerebral artery -with gestation (mean,	
	95 th and 5 th percentiles)	
Figure 11-1	Evolution of CRI/URI in a fetus in a normal pregnancy	82
Figure 12-1	The rate of fetal growth by measuring CRL	90
Figure 13-1	The rate of fetal growth by measuring HC	90
Figure 14-1	Birth weight curve (0-36 weeks)	91
Figure 15-1	BPD at 25 menstrual weeks	92
Figure 16-1	Abdominal circumference measurement	100
Figure 17-1	Femur length measurement	103
Figure 1-2	BPD measurement	124

Fig. No	Title	Page
Figure 2-2	Femur length measurement	124
Figure 3-2	Abdominal circumference measurement	125
Figure 4-2	MCA Doppler showing normal Doppler waveform and indices	129
Figure 5-2	Umbilical artery Doppler showing normal Doppler waveform and indices	129
Figure 6-2	The reciever-operating characteristics analysis of cerebroplacental ratio for Apgar score at 5 minutes	131

INTRODUCTION

The terms postdate, postterm, prolonged and postmature are often loosely used interchangeably to signify pregnancies that have exceeded a duration considered to be the upper limit of normal (*Cunningham et al.*, 2010).

Postterm includes pregnancies that last longer than 42 weeks while postdate pregnancies include those that last longer than established or estimated date of confinement which is also known the due date in layman's terms (i.e.40 weeks) (*Alexander et al.*, 2000).

The definition of postterm pregnancy generates the erroneous idea that 42 weeks (294 days) is the limit between normality and abnormality. More logical and more useful to the clinician and the patient is to define this limit as the time when the dangers of prolonging the pregnancy exceed the fetal and maternal dangers associated with delivery. Most of the information collected in the last 20 years indicates that this stage is reached prior to 42 weeks. Therefore, it seems reasonable to give attention to all pregnancies extending beyond the expected date of delivery (EDD) and ignore the limit between term and postterm gestations (*Arias et al.*, 2008).

Post term pregnancies account for about 5-10% of the deliveries and are known to be associated with increased risk for prenatal complications (*Vorherr*, 1975). The mechanism of fetal complication associated with postdate pregnancy is attributed to progressive placental insufficiency, particularly in the presence of decreased amniotic fluid (*Adhikari et al.*, 1998)

Therefore ultrasound monitoring has become an important component in the antepartum surveillance of postdated pregnancies, and induction of labor would often be considered for oligohydramnios detected in an otherwise normally grown pastdated pregnancies (*Johnson et al.*, 1986)

A few studies had looked into the Doppler blood flow changes in postdate pregnancies. Some demonstrated redistribution of blood flow in the fetal cerebral circulation in postdate pregnancies with adverse prenatal outcome, and such brain sparing phenomenon is thought to result in oligohydramnios. However, others reported insignificant difference in Doppler indices for postdate pregnancies with or without oligohydramnios (*Devine et al.*, 1994; *Selam et al.*, 2000; *Bar 1995*).

The Doppler velocimetry of the umbilical and middle cerebral arteries is a noninvasive clinical approach for evaluation of postterm pregnancy. This technique is thought to measure vessel tonus or downstream peripheral resistance of feto-placental or uteroplacental circulation (*Trudinger et al.*, 1985)

AIM OF THE WORK

The aim of this study is to evaluate the value of Cerebro-Placental ratio as a predictor of neonatal outcome in postdate pregnancies(40 to 42weaks).

Post-date pregnancy

Definition:

The terms postdate, postterm, prolonged and postmature are often loosely used interchangeably to signify pregnancies that have exceeded a duration considered to be the upper limit of normal (*Cunningham et al.*, 2010).

Postterm includes pregnancies that last longer than 42 weeks while postdate pregnancies include those that last longer than established or estimated date of confinement which is also known the due date in layman's terms (i.e.40 weeks) (*Alexander et al., 2000*).

The standard internationally recommended definition for postterm pregnacies endorsed by the American college of Obstetricians and Gynecologists (2004) is 42 completed weeks (294 days) or more from the first day of the last menstrual period. This definition depends on the onset of a menstrual flow assuming that it was followed by ovulation 2 weeks later. So, some pregnancies are not actually postterm, but rather the result of an error in estimation of gestational age because of faulty recall of the dates of menstruation or delayed ovulation as there is a large variation in menstrual cycles in normal women and so, menstrual dates are frequently inaccurate in predicting postdate pregnancies (*Munster et al.*,1992)

Thus, there is some inevitable imprecision when attempting to define prolonged pregnancy, but because there is no methods to identify pregnancies that are truly prolonged, all pregnancies judged to be 42

completed weeks should be managed as if abnormally prolonged(*Cunningham et al.*, 2010).

The definition of postterm pregnancy generates the erroneous idea that 42 weeks (294 days) is the limit between normality and abnormality. More logical and more useful to the clinician and the patient is to define this limit as the time when the dangers of prolonging the pregnancy exceed the fetal and maternal dangers associated with delivery. Most of the information collected in the last 20 years indicates that this stage is reached prior to 42 weeks. Therefore, it seems reasonable to give attention to all pregnancies extending beyond the expected date of delivery (EDD) and ignore the limit between term and postterm gestations (*Arias et al.*, 2008).

Postmature should be used to describe the infant with recognizable clinical features indicating a pathologically prolonged pregnancy. So, postmature is reserved for a specific clinical fetal syndrome (*Cunningham et al.*, 2010).

Incidence:

According to the International Federation of Gynecologists and Obstetricians (1986), the incidence of prolonged pregnancy is about 5- 10 %. This wide variation is due to the difficulty in calculation of accurate date of delivery. (*Neilson*, 2004).

Others estimate the frequency of prolonged pregnancy to vary between 4% and 14 % (*Manchanda et al.*, 1999).

Ultrasonographic examination in first trimester has been shown to reduce the incidence of truly prolonged pregnancy from about 10% to low