The value of the first trimester sonography in fetal anatomy scanning and detection of fetal anomalies

Thesis

Submitted for fulfillment of the M.Sc degree in Obstetrics and Gynecology

by
Weeam Fouad A.Rahman Badeeb
(M.B, B.Ch.)
Faculty of Medicine-Aden University
Republic of Yemen

Supervised by

Prof. Dr. Alaa El Din Naguib El Ebrashy Professor of Obstetrics & Gynecology Consultant in U/S and Fetal Medicine Faculty of Medicine-Cairo University

> Dr. Abdalla Yehia ElKateb Lecturer of Obstetrics & Gynecology Faculty of Medicine-Cairo University

Dr. Eman Abdel Monem El Kattan Lecturer of Obstetrics & Gynecology Faculty of Medicine-Cairo University

> Faculty of Medicine Cairo University 2009

بسم الله الرحمن الرحيم

وَلَقَدْ خَلَقْنَا الإِنسَانَ مِن سُلالَةٍ مِّن طِينٍ (١٢)

ثُمَّ جَعَلْنَاهُ ثُطْفَةً فِي قرارٍ مَّكِين (١٣)
ثُمَّ خَلَقْنَا الثُّطْفَةُ عَلَقَةً فَخَلَقْنَا الْعَلْقَةُ مُضْغَةً
ثُمَّ خَلَقْنَا الثُّطْفَةُ عِظَامًا فَكَسَوْنَا الْعِظَامَ لَحْمًا ثُمَّ فَخَلَقْنَا الْعِظَامَ لَحْمًا ثُمَّ فَخَلَقْنَا الْعِظَامَ لَحْمًا ثُمَّ أَنشَانَاهُ خَلْقًا آخَرَ فَتَبَارَكَ اللَّهُ أَحْسَنُ الْخَالِقِينَ أَنْاهُ خَلْقًا آخَرَ فَتَبَارَكَ اللَّهُ أَحْسَنُ الْخَالِقِينَ أَنْاهُ خَلْقًا آخَرَ فَتَبَارَكَ اللَّهُ أَحْسَنُ الْخَالِقِينَ الْخَالِقِينَ (١٤)

صدق الله العظيم

سورة المؤمنون(آية ١٤-١٢)

Dedication To...

My First Country (Yemen)

The beautiful country that I love more than myself My Second Country (Egypt)

A fascinating land with the most hospitable, warm and honest people.

The Fetal Medicine Unit (Kasr Al-Eini Hospital):

For their commitment and amazing support of my work and training during the last 9 months.

The German Academic Exchange Service (DAAD):

Without their support and generosity, this work would have not been possible. Thank you for giving me this opportunity and your commitment to promoting higher education and advanced training of the Yemenis.

My Mother and Father:

I dedicate this work and degree to you. No words can describe my thanks and appreciation for your sacrifices and commitment to my education and happiness. Your big and loving hearts and continued support continue to be my sources of inspiration for excellence and success in my education and personal endeavours.

My Three Brothers:

Wahad,

Wada

L Wahag

For their love and continued support

Acknowledgement

I owe a debt of gratitude to many people for their assistance and support in the preparation of this work.

First of all, I have to thank Allah, The Most Gracious who gave me an amazing opportunity to life and who helped me in bringing this work to light.

Then I would like to express my deep thanks and appreciation to Professor Dr.Alaa El-Din El Ebrashy, professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his valuable guidance, support and great help in supervising this work, no words can express my feelings, respect and gratitude to him as regards his continuous encouragement and constructive criticism given to me at every stage of this work.

I should like to thank Dr. Abdalla Elkateb, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for his continuous monitoring and assistance and help in presenting this work.

I am also deeply indebted to Dr. Eman EL Kattan, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, whose help, stimulating suggestions and encouragement helped me in all the time for writing this thesis.

I would express my deep thank to my parents and brothers whose patient, love and support enabled me to complete this work.

I would like to thank the German Academic Exchange Service (DAAD) for having given me such a great opportunity to complete my higher studies in Egypt.

Receiving this scholarship motivates me to complete my degree. I look forward to being able to help my community once returning back home. I thank you for your confidence and willingness to help me in achieving my goals.

I don't want to forget to thank the Fetal Medicine Unit (21st Department in Al-Kasr Eini Hospital) for giving me permission to collect my cases and to support me. I would like to thank all membership in this department; nurses, Doctors, secretaries, Vice Director and Director. Special thank to Dr. Mohammed Elsherif for his great support and really I learned a lot from him.

INDEX

<u>Subject</u>	Page
Introduction	1
Chapter one: Introduction on ultrasonography	3
Chapter two: Embryologic background	7
Chapter three : Classification of congenital anomalies	16
Chapter four : Normal first trimester ultrasonography	22
Chapter five : First trimester screening	39
Chapter six : Second trimester screening	77
Chapter seven: Fetal anomalies	91
Patients and methods	111
Results	116
Discussion	135
Conclusion	150
Recommendations	152
English summary	
References	
Arabic summary	

LIST OF ABBREVIATIONS

°C	Degree centigrate
2D	Two dimensional
3D	Three dimensional
ACOG	American Collegue of Obstetricians and
	Gynecologists
AFP	Alpha-fetoprotein
AMA	Advanced Maternal Age
BMI	Body Mass Index
B-mode	Brightness mode
BPD	Biparietal diameter
bpm	Beat per minute
CNS	Central Nervous system
CRL	Crown-rump length
CVS	Chorionic villus sampling
CW	Continuous wave
DHEAS	Dehydroepiandrosterone sulfate
DS	Down syndrome
DV	Ductus venosus[
ECC	Ectrodactyly-ectodermal dysplasia-cleft
syndrome	palate syndrome
FASTER	First and second trimester evaluation of risk
	for aneuploidy
FHR	Fetal Heart rate
FL	Femur length
FMF	Fetal Medicine Foundation
GA	Gestational Age
hCG	Human chorionic gonadotropin
IVF	In vitro fertilization
KHZ	Kilo Hertz
LHCGR	Luteinizind hormone/choriogonadotrophin
	receptor
LMP	Last menstrual period

Metre per second
Mega Hertz
Motion mode
Multiples of the Median
Maternal serum alpha-fetoprotein
Nasal bone
Nuchal translucency
Neural Tube Defect
Pregnancy associated plasma protein A
Pulsed Ultrasound Doppler Velocity
Standard Deviation
Systemic Lupus Erythmatous
Screen Positive rate
Trans-abdominal sonography
Thermal Index
Thermal Index for soft tissue
Thermal Index for bone
Trans-vaginal sonography
Ultrasound Doppler Velocimetry
Unconjugated estriol three
Ultrasound
Vertebral defect, Anal atresia, Tracheo-
esophageal fistula, Esophageal atresia, Radial
limd and Renal defect
Ventricular septal defect

LIST OF TABLES

Table	page
Table (2-1) Early pregnancy embryologic stages	12
Table (2-2):Carnegie Stage Table	13
Table(5-1):Estimated risk for trisomies 21, 18, and 13 (1 per number given in the table) in relation to maternal age and gestation	44
Table(5-2):Nuchal translucency measurements and adverse outcomes	58
Table(5-3):Conditions associated with increased nuchal translucency	58
Table (1): The ability of proper visualization of fetal organs in both gestational age groups (11,0-12,2 weeks) and (12,3-14 weeks)	118
Table (2): The ability of properly visualizing fetal organs by TAS and TVS in the 11-14 weeks	119
Table(3): The ability of visualizing complete fetal anatomy survey by TAS and TVS in the 11-14 week scan	120
Table:(4) The ability of visualizing complete fetal anatomy survey by TAS and TVS in the 11-14 week scan after excluded the heart and kidneys	121
Table (5): The ability of properly visualizing fetal organs with advanced gestational age both transabdominally and trans-vaginally	122

Table(6): comparison between the duration of the 11-14 weeks fetal scan by TAS and TVS	123
Table(7): Effect of Body Mass Index (BMI) on the ability of achieving complete fetal anatomy scan by using TAS in 11-14 weeks scan	124
Table(8): Effect of Body Mass Index (BMI) on the ability of achieving complete fetal anatomy scan by using TVS in 11-14 weeks scan	125
Table (9): Failure of proper visualization of fetal organs in the first and mid trimester scans	126
Table (10): Prevalence of anomalies detected in 11-14 week and mid-trimester fetal scan.	127
Table (11): Prevalence of congenital anomalies in the study cases in relation to nuchal translucency	128

LIST OF FIGURES

Figure	Page
Figure 2-1. A. Preovulatory follicle bulging at the	11
ovarian surface. B. Ovulation. C. Corpus luteum.	
Figure 2-2: the germinal period of development	13
Figure.2-3: Trophoblast differentiates into	14
syncytiotrophoblast and cytotrophoblast.	
Syncytiotrophoblast grows so rapidly that cells have	
no opportunity to establish cell boundaries.	
Figure 2-4 : 5 weeks embryo	15
Figure 3-1. Head of infant showing plagiocephaly	17
(asymmetric skull shape) due to the pressure from a	
fibroid in utero. This is an example of a deformational	
birth defect.	
Figure 3-2 :Terminal transverse defects of index,	18
middle and ring fingers due to amniotic bands. This is	
an example of a birth defect resulting from a	
disruptive event.	
Figure 4-1. Transvaginal ultrasound image of an early	25
intrauterine gestational sac. The sac measures 8 mm	
(mean diameter) and no embryonic structures are yet	
visible (4–5 weeks gestation).	
Fig. 4-2 - Embryo at 6 weeks (crown–rump length 5	27
mm). Coronal section with arrows pointing to the	
embryo. The yolk sac lies adjacent to the embryo	
Figure 4-3. M-mode ultrasound identifies and	27
measures embryonic cardiac activity (white arrows)	
and maternal cardiac activity arrows (black).	
Figure 4-4. Transvaginal ultrasound image of an	28
intrauterine gestation sac with yolk sac, amniotic sac	
and embryo visible. The yolk sac is separate from the	
embryo, attached by the vitelline duct. The amniotic	
sac is very close to the fetus. The cepahalic end of the	
fetus is distinguishable by the diamond-shaped	
rhomboencaphalon (7–8 weeks gestation).	

Figure 4-5.3D image of an 8 week embryo demonstrating the clear anatomy, including limb buds, but incomplete digit development. The physiological midgut herniation is apparent. The amniotic cavity is beginning to expand (8 weeks gestation).	29
Fig. 4-6. Transvaginal ultrasound image at 10 weeks gestation demonstrating that the amniotic cavity has expanded and the extracoelomic space has virtually disappeared. The amniotic and chorionic membranes will subsequently fuse. Note the poor crown-rump length measurement (the embryo is not in a true sagittal section), which would mean an underestimation in size measurement and hence gestational age calculation.	29
Figure 4-7. Measurement of the greatest length of the embryo (8 mm) as the cephalic and caudal ends cannot yet be clearly distinguished (6 weeks gestation).	31
Figure 4-8. Measurement of true crown-rump length (23 mm) as the cephalic and caudal ends are clearly distinguishable and the embryo has become sufficiently deflexed (9 weeks gestation).	31
Figure 4- 9. Crown-rump length (CRL) measurements in embryos and fetuses which remained viable (black diamonds) beyond the first trimester and which miscarried before the end of the first trimester (open circles), demonstrating the significantly smaller size of pregnancies destined to fail. The solid line and dashed lines are the expected median CRL and 2 SDs for gestational age, respectively.	35
Fig. 4-10. Rate of growth of CRL (mm per day) in ongoing viable pregnancies (group 1) and pregnancies undergoing subsequent miscarriage (group 2), with 95% confidence intervals	36

Figure 5-1 - In all the figures there is a good sagittal section of the fetus. In images (a) and (b), the magnification is too small for accurate measurements. The correct magnification is shown in images (c) and (d), where the fetuses are in the neutral position and the amniotic membrane can be clearly seen separated from the nuchal membrane. In image (e), the umbilical cord is round the neck, producing an indentation in the nuchal membrane and the translucency that is larger above than below the cord. The correct placement of the callipers is indicated in diagram (f)	0 \$
Figure 5-2 - Reference range of fetal nuchal translucency with crown–rump length showing the 5th, 25th, 50th, 75th and 95th centile	55
Figure 5-3 Ultrasound image of present nasal bone with echogenic line below skin.	64
Figure 5-4 Ultrasound image of absent nasal bone (no echogenic line below skin).	65
Figure 5-5 ; Fetal crown-rump length in fetuses with triploidy plotted on the reference range (mean, 95 th and 5th centiles) with gestation of chromosomally normal fetuses.	66
Figure 5-6 Cystic hygroma at 16 weeks' gestation – Turner syndrome. (a) On the axial view, the possible presence of septa (arrows) is evaluated. (b) On the midsagittal view, the extent of the retronuchal hygroma is assessed (arrowheads). (c) Confirmation at autopsy. In this case, significant subcutaneous edema was also present.	68
Figure 5-7 Holosystolic regurgitation is seen on pulsed Doppler examination of the tricuspid valve in a fetus at 12 weeks' gestation. The velocity of over 100 cm/s allows clear distinction from arterial flow, which is usually less than 50 cm/s at this gestational age.	69

Figure 5-8; Ultrasound picture of a 12-weeks fetus demonstrating measurement of maxillary length (11-14 weeks scan.	71
Figure 5-9. Ultrasound picture of a 12-weeks fetus with megacystis	73
Figure (5-10); Fetal heart rate in fetuses with trisomy 13 plotted on the reference range (mean, 95th and 5th centiles) with crown-rump length of the chromosomally normal fetuses.	75
Figure (5-11): flow velocity waveforms from the fetal ductus venosus at 12 weeks gestation demonstrating normal pattern(top) and abnormal a-wave(bottom).	٧٧
Figure 6-1. Ultrasound of axial view of the fetal head with calipers on the nuchal fold measurement.	۸۲
Figure 6-2. Marked nuchal thickening and trisomy 21. Axial image at 18 weeks by dates shows marked nuchal thickening of 9 mm. A small pericardial effusion and echogenic intracardiac foci were also present.	۸۲
Figure 6-3 Longitudinal view of the fetal abdomen of a fetus with Down syndrome showing hyperechoic bowel. The bowel is as bright as nearby bone.	Λź
Figure 6-4: Fetal heart with echogenic cardiac focus	٨٦
Figure 6-5 Fetal profiles at 20 weeks' gestation in a trisomy 21 fetus, demonstrating absence of the nasal bone (left), and in a normal fetus demonstrating the nasal bone (right).	86
Figure 6-6 Transverse view of the abdomen of a fetus with Down syndrome showing both fetal kidneys with pyelectasis.	87
Figure:6-7 Choroid plexus cysts	89
Figure 6-8 View of the fetal hand of a fetus with Down syndrome showing hypoplasia of the phalanx manifested as absent ossification of the middle phalanx of the fifth digit, resulting in clinodactyly	90

Figure 71. Rhombencephalon (arrow) in coronal plane; the embryo is 8 weeks' gestational age. This is a common pitfall for imaging interpretations and should not be mistaken for an abnormal finding.	93
Figure (7-2) Congenital anomalies confidently detectable at 12–14 weeks' gestation: anencephaly, at 13 weeks. (a) Midsagittal lowmagnification view of the fetus, showing the absence of the calvarium (arrows); (b) surface rendering showing the classic 'frog' face aspect, due to the concurrent absence of the calvarium and the moderate macrophthalmia, often present in anencephaly.	95
Figure: (7-3) Acrania at 10 weeks of gestation. A 2D ultrasound coronal image at 10 weeks (A). Note the normal appearance of amniotic membrane, which indicates that this condition is not amniotic band syndrome. A 3D ultrasound image of the same fetus as left image.	95
Fig (7-4):Spina bifida at 9 weeks of gestation. (Left) 2D sagittal image. Cystic formation was seen (white circle) at lumber part. (Right) 3D image of neural tube. Clear dilatation of the neural tube is demonstrated (arrows).	97
Figure (7-5): Three-dimensional surface view of the fetus at 12 weeks gestation. (A) Note the regularity of the anterior abdominal wall, because the midgut has returned into the abdomen. (B) Three-dimensional surface view of a fetus with hydrocephalus at 12 weeks' gestation. Details of the face such as the nose, orbits, maxilla, and mandible are visible together with overall enlargement of the head	٩٧
Figure (7-6)Cystic hygroma at 13 weeks' gestation. The multiplanar approach allows simultaneous visualization of the severe septate hygroma (arrows) on the axial (a) and, (b) midsagittal view. (c) Three-dimensional surface rendering, demonstrating the thoracic extension of the lymphangiectasia (arrows). (d) Confirmation at autops.	9.٧

	0.0
Figure (7-7): Omphalocele at 12 weeks of gestation.	99
A 3D surface image of the fetus (A). Omphalocele	
was seen at the left side of the fetus. Aborted fetus	
(B). Sac of omphalocele was ruptured on delivery.	
Fetal chromosome was normal.	
Figure (7-8). Sagittal view of a 13-week gestational	100
age fetus shows a dilated pear-shaped bladder and a	
normal amount of amniotic fluid. The presumed	
diagnosis was posterior urethral valves.	
Figure (7-9): Severe scoliosis at 12 weeks of gestation.	101
(A) 3D image of fetal back. Severe scoliosis is	
demonstrated. (B) Back view of aborted fetus. Fetal	
karyotype was normal.	ı
Figure 7-10 Spina bifida. (a) Photograph of a fetus	١٠٤
with spina bifida. (b) Maximum-mode rendering of	
the spine demonstrates lateral splaying of the lateral	
vertebral processes, with widening of the spinal canal	
(arrows). (c) Axial scan of the lumbosacral spine	
demonstrating the open vertebra (arrows) and	
membranous coverage of the meningocele. (d)	
Longitudinal view of the lumbar spine showing the	
bulging membranes of the myelomeningocele	١٠٦
Figure 7-11 Transverse ultrasound image of the fetal	1 * *
thorax shows presence of the stomach by the side of	
the fetal heart in a case of congenital diaphragmatic	
hernia.	A A A
Figure 7-12 Omphalocele in a fetus with multiple	١.٧
anomalies (anencephaly, omphalocele, and bilateral	
aplasia radii). (a) At 23 weeks of gestation, the axial	
view of the abdomen demonstrates a large	
omphalocele containing the liver (the arrows indicate	
the large wall defect). (b) 3D low magnification maximum-mode rendering showing the anencephaly	
and the omphalocele (arrowheads). (c) The stillborn	
fetus: the omphalocele (arrowhead), with the cord	
insertion, and the aplasia radii with ectrodactyly are	
shown.	
SHO WII.	