

Molecular Design and Synthesis of Certain New Quinoline Derivatives having Potential Anticancer Activity

Thesis presented by:

Rasha Mohamed Mohamed Aly

BSc. In pharmaceutical Sciences May 2005
Instructor of Pharmaceutical Chemistry-NODCAR
(National Organization of Drug Control And Research)

Submitted for the partial fulfillment of the Master Degree
In Pharmaceutical Sciences (Pharmaceutical Chemistry)

Under the supervision of:

Prof. Dr.Dalal Abd Alrahman Abou El-Ella

Professor of Pharmaceutical Chemistry
Ain Shams University

Dr. Amira Mohamed El- Metwally

Researcher of Organic Chemistry National Organization of Drug Control And Research

Dr. Diaa Abdel Samea Ibrahim

Researcher of Organic Chemistry
National Organization of Drug Control And Research

Faculty of Pharmacy, Ain Shams University

Cairo, 2013

<u> Heknowledge</u>

Firstly, I thank and praise ALLAH in a compromise to complete access to this work.

I would like to express my sincere gratitude to Dr. Dalal A.Abou El Ella,

Professor of Pharmaceutical Chemistry; Ain shams University, for her kind suggestion of
the point of this research and supervision in writing this thesis. I want to express my
appreciation to her valuable advice, constant support and continuous guidance during all
stages of this work. She's profoundly thanked for her accuracy and great experience in
pharmaceutical chemistry. No words can describe my gratitude to her.

I am extremely grateful and thankful to **Dr. Amira Mohamed El- Metwally**,

Researcher of Organic Chemistry; NODCAR, for her supervision, untiring help,

chemicals support, valuable assistance and constant encouragement throughout the

whole practical work and during writing this thesis. I really thank her

for her great support and supervision.

I am heartily thankful and sincerely appreciated to **Dr. Diaa Abdel Samea Ibrahim**, Researcher of Organic Chemistry, NODCAR, for his encouragement, guidance, motivation, enthusiasm, and immense knowledge which enabled me to understand the drug design, molecular modeling and practical work in experimental field of chemistry beside his great role in supervision on thesis writing. I am extremely grateful to his sincere guidance, fruitful indispensable opinion, continuous interest and tremendous support throughout the whole work. I introduce my sincere appreciation to him for all i have learned from him and for his continuous help and support in all stages of this thesis.

I would also like to thank **Dr.Ahmed Esmat**,

Lecturer of Pharmacology and Toxicology, Faculty of pharmacy; Ain shams University,
Cairo, Egypt, for his great effort in performing the biological activity tests,
He's profoundly thanked for his effort, support, and experience.

Dedication

I have to thank my **Mother** and **Father**for their love, support in my life, believing in me
and praying for me. Without whom I could not
have made this thesis.

Thank you both for giving me strength to reach the stars and chase my dreams.

I dedicate this thesis for you with all my love.

Many thanks for my sisters; Marwa, Eman and Heba for their love, support, encourage and praying for me.

I would like to thank Amany wahba,

Azza Awad, Hend Ezzat, and Safee Mahmoud for

Supporting me in performing the analysis in this thesis.

Thanks to all my friends,
especially Amany Morsi, Sara El-Monaiery and Hanady Amer
who always help, encourage and support me.

I have to thank Crystal libraries for their effort and accuracy in printing this thesis.

Thanks for every person encouraging, supporting and helping me to introduce this thesis.

THANKS GOD

Contents	i
List of figures	v
List of tables	ix
List of abbreviations	x
Abstract	xiii
1. Introduction	1
1.1. What is cancer?	
1.2. The size of cancer problem	2
1.3. Types of cancer	3
1.4. Cancer causes and risk factors	3
1.5. Cancer symptoms	
1.6. Biological properties of cancer cells	4
1.7. Cancer treatment	4
1.7.1. Surgery	5
1.7.2. Radiotherapy	
1.7.3. Hormone-based therapy	6
1.7.4. Biotherapy	6
1.7.5. Chemotherapy	6
1.7.5.1. Antimetabolites	7
1.7.5.2. Drugs that inhibit hormone action	8
1.7.5.3. Drugs acting via radical species, photosensitizers and	
cancer	
1.7.5.4. DNA alkylating agents	
1.7.5.5. Compounds interacting with DNA minor groove	
1.7.5.6. DNA topoisomerase inhibitors	
1.7.5.7. Drugs targeting Tubulin and Microtubules	
1.7.5.8. Drugs that inhibit signaling pathways for tumor cell gi	
1.8. Protein kinases	
1.8.1. Serine/threonine protein kinase	
1.8.2. Dual-specificity kinases	
1.8.3. Histidine Kinases	
1.8.4. Tyrosine kinases	
1.8.4.1. Non Receptor Tyrosine Kinases (NRTKs)	
1.8.4.2. Receptor Tyrosine Kinases (RTKs)	
1.8.4.3. EGF and EGFR	
1.8.4.4. EGFR and cancer	
1.8.4.5. EGFR structure and regulation of activity	
1.8.4.6. The binding of EGF to EGFR	
1.8.5. The ATP-binding site	
1.8.6. Types of kinase inhibitors	
1.8.6.1. Competitive inhibitors (type I)	

1.8.6.2. Type II inhibitors	26
1.8.6.3. Allosteric inhibitors (type III)	
1.8.6.4. Covalent inhibitors	
1.8.7. Anilinoquinazoline as EGFR inhinitors	28
1.8.8. Antineoplastic anilinoquinolines	30
1.9. Quinoline	30
1.9.1. Quinoline properties	31
1.9.2. Quinolines Synthesis	32
1.9.2.1. Quinolines from aryl-amines and 1, 3-dicarbonyl compounds	32
1.9.2.2. Quinolines from aryl amines and α , β -unsaturated carbonyl compounds	32
1.9.2.3. Conrad–Limpach synthesis	33
1.9.2.4. Gould–Jacobs reaction	33
1.9.2.5. Niementowski quinoline synthesis	34
1.9.2.6. Quinoline from enamines	34
2. Rationale and Design	36
2.1. Rationale and drug design of diagnostic anilinoquinoline TK inhibitors	37
2.2. Synthetic schemes	
2.2.1. Scheme (1) for synthesis of starting materials IVa-c	41
2.2.2. Scheme (2) for synthesis of intermediates VIIa-f and final compounds VIIg-i	42
2.2.3. Scheme (3) for synthesis of intermediates IXa-c and final compounds IXd-i	43
2.2.4. Scheme (4) for synthesis of final compounds Xa-f , XIa-c and XIIa-c	44
3. Results and discussion	45
3.1. Chemistry	46
3.1.1. Scheme (1)	46
3.1.2. Scheme (2)	47
3.1.3. Scheme (3)	51
3.1.4. Scheme (4)	53
3.2. Biological evaluation	59
3.2.1. Cytotoxicity assay	60
3.2.1.1. Discussion of the results	68
3.2.1.2. Conclusion	68
3.2.2. Biochemical assay (EGFR protein kinase inhibitor activity)	69
3.2.2.1. Evaluation of the newly synthesized targeted compounds at concentration	
10 μM against EGFR TK target	69
3.2.2.1.1. Results and discussion	70
3.2.2.1.2. Conclusion	71
3.2.2.2. IC_{50} Determination for compound $\mathbf{X}\mathbf{b}$ and $\mathbf{X}\mathbf{f}$ against $EGFR$	71
4. Molecular modeling	73
4.1. Introduction	74
4.2. The molecular modeling techniques	74

4.2.1. Pharmacophore model development	74
4.2.1.1. Training set selection and conformational modeling	75
4.2.1.2. Common features pharmacophores	75
4.2.1.3. Mapping of the proposed compounds	78
4.2.2. Docking and binding energy calculations	80
4.3. Results and discussion: quantum docking correlation	96
4.4. Methodology	101
4.4.1. Pharmacophore model development	101
4.4.1.1. Training set building and conformational modeling	101
4.4.1.2. Common features pharmacophores	102
4.4.1.3. Mapping of the proposed compounds	102
4.4.2. Docking (C-Docker)	102
4.4.2.1. Loading the EGFR enzyme from protein data bank (PDB)	102
4.4.2.2. Preparation of the enzyme	102
4.4.2.3. Identifying the binding pocket	103
4.4.2.4. Display lead-protein interactions	103
4.4.2.5. Docking of lead compound	103
4.4.2.6. Displaying the docking scores	103
4.4.2.7. Validation of the lead compound docking and selection of proper	
binding pose	103
4.4.2.8. Docking of the reference compound (70) and proposed compounds	104
4.4.2.8.1. Loading the reference compound (70) and proposed compounds	104
4.4.2.8.2. Interactive docking	104
4.4.2.8.3. Displaying the docking scores	104
4.4.3. Binding energy	104
4.4.3.1. Minimization	104
4.4.3.2. Binding energy calculations	105
4.4.3.3. Displaying the binding pattern of the ligand (22), reference compound (7	'0) and
promising compounds (2D and 3D)	105
4.4.4. Quantum docking correlation	105
4.5. Final conclusion.	106
5. Experimental	108
5.1. Chemistry	109
5.1.1. Materials and methods	109
5.1.2. Synthesis	110
5.2. Biological evaluation of compounds	153
5.2.1. Cytotoxicity assessment	153
5.2.1.1. Methodology	
5.2.1.1.1. Cell culture	153
5.2.1.1.2. SRB cytotoxicity assay	153
5.2.2. Biochemical Assay (EGFR protein kinase inhibitor activity)	153

5.2.2.1. Evaluation of synthesized compounds at concentration 10 μM again	ıst EGFR TK
target	153
5.2.2.1.1. Materials: quality control and reagents	
5.2.2.1.2. <i>Methodology</i>	154
5.2.2.1.3. Protein kinase (PK) assays	154
5.2.2.2. IC_{50} Determination for compound ${\it Xb}$ and ${\it Xf}$ against $EGFR$	155
6. References	

<u>ist o</u>	<u>f figures:</u>		
1.	<i>Figure</i> (1):	Cancer treatment methods	5
2.	Figure (2): 1	Main types of reversible interactions with DNA	10
3.	<i>Figure (3):</i> .	Microtubules and tubulin structures	12
4.	Figure (4):	Dynamic equilibrium between microtubules and tubulin dimers	12
<i>5</i> .	<i>Figure (5):</i> .	Protein phosphorylation and dephosphorylation	14
6.	<i>Figure (6):</i> 1	Tyrosine kinases classification	16
<i>7</i> .	Figure (7): .	Inactive form of tyrosine kinase: prior to binding of an activating ligand	17
8.	Figure (8): .	Mechanisms leading to EGFR oncogenic signaling	19
9.	Figure (9):	EGFR composition and EGFR-ligand complex	20
10	. Figure (10):	Binding of EGF to EGFR	21
11	. Figure (11):	Binding of ligand to EGFR leads to receptor dimerization, autophosphor lation and activation of several downstream signaling pathways	
12	. Figure (12):	Interactions of ATP in the catalytic domain of EGFR	23
13	. Figure (13):	The binding of kinase inhibitors type I: (a) CX4945 (27) and (b) Lapatinib (22); the protein kinase is shown in grey color	25
14	!. Figure (14):	The binding of kinase inhibitors type II: Imatinib (28)	26
15	. Figure (15):	The binding of kinase allosteric inhibitors: compound (30)	27
16	6. Figure (16):	Mechanism of action of irreversible EGFR inhibitors, e.g. E KI-785(31)	28
17	. Figure (17):	Structure-activity relationship in 4-anilinoquinazolines as EGFR inhibitors	28
18	. Figure (18):	Quinoline (39) resonance structures	32
19). Figure (19):	Similarities of pharmacophore features between target compounds (VIIg IXd-i, Xa-f, Xia-c and XIIa-c) and references compounds (Lapatinib (22 and compound (70))	?)
20). Figure (20):	Molecular field analysis of 4-anilinoquinazoline, 4-anilinoquinoline-3-carbonitrile and 4-anilinoquinoline-3-carboxamide [cyan: quinazoline as reference; pink: 3-cyanoquinoline (similarity = 0.823) and orange: quinoline-3-carboxamide (similarity = 0.868)]	
21	. Figure (21):	N-aryl cyanoacetamides synthesis	46

22. Figure (22):	Reaction of DMFDMA with cyanoacetamides	<i>17</i>
23. Figure (23):	Reaction mechanism of N-aryl cyanoacetamides IVa-c with DMFDMA	48
24. Figure (24):	Reaction mechanism of cyanoacrylamide derivatives VIIa-i	50
25. Figure (25):	Mechanism of quinoline-3-carboxamide derivatives IXa-i	52
26. Figure (26):	Claisen-Schmidt condensation.	53
27. Figure (27):	Mechanism of the formation of α, β-unsaturated keto derivatives Xa-f from 6-acetyl quinoline-3-carboxamide derivatives IXa-c and aromatic aldehydes	
28. Figure (28):	Thiazole synthesis	56
29. Figure (29):	Mechanism of the formation of 6-(2-aminothiazole)quinoline-3-carboxamia derivatives XIa-c	
30. Figure (30):	Reaction of amine with phenyl isothiocyanate	58
31. Figure (31):	Mechanism of 6-(thiourea)quinoline-3-carbxamide derivatives XIIa-c formation from 6-(2-aminothiazole)quinoline-3-carboxamide derivatives XIa-c and phenyl isothiocyanate	59
32. Figure (32):	IC ₅₀ of Doxorubicin (10)	60
33. Figure (33):	IC ₅₀ of compound VIIg	61
34. Figure (34):	IC ₅₀ of compound VIIh	61
35. Figure (35):	IC ₅₀ of compound VIIi	61
36. Figure (36):	IC ₅₀ of compound IXd	62
37. Figure (37):	IC ₅₀ of compound IXe	62
38. Figure (38):	IC ₅₀ of compound IXf	62
39. Figure (39):	IC ₅₀ of compound IXg	53
40. Figure (40):	IC ₅₀ of compound IXh	63
41. Figure (41):	IC ₅₀ of compound IXi	63
42. Figure (42):	IC ₅₀ of compound Xa	54
43. Figure (43):	IC ₅₀ of compound Xb	64
44. Figure (44):	IC ₅₀ of compound Xc	64
45. Figure (45):	IC ₅₀ of compound Xd	55
16 Figure (16).	IC of compound Ye	65

47. Figure (47).	: IC ₅₀ of compound Xf	65
48. Figure (48).	: IC ₅₀ of compound XIa	66
49. Figure (49).	: IC ₅₀ of compound XIb	66
50. Figure (50).	: IC ₅₀ of compound XIc	66
51. Figure (51).	: IC ₅₀ of compound XIIa	67
52. Figure (52).	: IC ₅₀ of compound XIIb	67
53. Figure (53).	: IC ₅₀ of compound XIIc	67
54. Figure (54).	Graph of log compounds Xb and Xf concentrations against % inhibition of activity	72
55. Figure (55).	The thirty literature compounds used as a training set in the pharmacophobuilding with their IC_{50} values	
centers (1, 2 b) The common	; in features pharmacophore generated from training set; two hydrophobic g; cyan color), one HBD (magenta color) and two HBA (green color) give generated features	ce
high ranked b) Mapping of	reference compound [Lapatinib (22), fit value = 4.91551] on the generated pharmacophorereference compound [compound (70), fit value = 4.50162] on the generated pharmacophore	78 d
pharmacoph b) Mapping of	compound \pmb{VIIg} (fit value =3.7296) on the generated high ranked nore	
(from PDB; b) H-Bond inte (DS 2.5; RM c) H-Bond inte	ractions of reference compound [Lapatinib (22)] with the active site of EG. 1 H-bond with MET 793)	93 FR 94 .5;
*	ractions of compounds VIIg with the active site of EGFR	05

·	ractions of compound Xd with the active site of EGFR (2 H-bonds with MET)	
	energy -40.4646)9 ractions of compound Xa with the active site of EGFR(3 H-bonds with MET	
	4 and GLN 791; binding energy -35.6041)9	
61. Figure (61):	Overlay of compound Xa (in grey color) on Lapatinib (22) (in green color) according to the result of quantum docking9	
62. Figure (62):	Overlay of compound Xb (in grey color) on Lapatinib (22) (in green color) according to the result of quantum docking9	
63. Figure (63):	Overlay of compound Xf (in grey color) on Lapatinib (22) (in green color) according to the result of quantum docking9	
64. Figure (64):	Unfavorable interaction of Xa with the active site9	8
65. Figure (65):	Favorable interaction of compound Xb with the active site of EGFR9	9
66. Figure (66):	Favorable interaction of compound Xf with the active site of EGFR9	9
67. Figure (67):	H-Bond interactions of compound Xb with the active site of EGFR (2 H-bonds with CYS 797 and ARG 841; binding energy -34.2012)10	0
68. Figure (68):	H-Bond interactions of compound Xf with the active site of EGFR (no H-bonds; binding energy -39.7814)10	1

List of tables:

1.	Table (1): The HER family members and their dysregulation effect in the development of cancer	18
2.	Table (2): The results of EGFR TK inhibition activity and antitumor activity assays	69
<i>3</i> .	Table (3): % Activity change of EGFR target in the presence of compounds Xb and Xf and their IC ₅₀ values	.72
4.	Table (4): The newly synthesized compounds with their promising fit-values, -C-docker energy, -C-docker interaction energy and binding energy compared with Lapatinib (22) and compound (70)	
<i>5</i> .	Table (5): The interactions of the promising compounds which were selected for synthesis with EGFR	82