A COMPARATIVE STUDY BETWEEN MULTI-SLICE COMPUTERIZED TOMOMOGRAPHY WITH THREE DIMENSIONAL RECONSTRUCTION AND CONVENTIONAL TOMOGRAPHY IN THE ASSESSMENT OF MAXILLOFACIAL FRACTURES

THESIS

Submitted to the Faculty of Oral and Dental Medicine, Cairo University, in partial fulfillment of the requirements of Doctoral Degree (DDS) in Oral Radiology

By **Farid Medhat Farid**

B.D.S. (Cairo University, 1998) M.D.S. (Cairo University, 2006) Assistant lecturer in Oral Radiology Department

> Faculty of Oral and Dental Medicine Cairo University 2009

SUPERVISORS

Prof. Dr. Zeinab Abd El-Salam Abd El-Latif

Prof. of Oral Radiology
Faculty of Oral and Dental Medicine
Cairo University

Prof. Dr. Doría Salem
Prof. of Radiodiagnosis
Faculty of Medicine
Cairo University

DEDICATION

TO MY DAD, MUM, MY LOVELY WIFE, KARIM AND YOUSSEF.

ACKNOWLEDGEMENT

First of all thanks to *God*.

No words can fulfill the feeling of gratitude and respect to *Prof. Dr. Zeinab Abd El-Salam Abd El-Latif, Prof. of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University* for her constant support and attention, keen supervision, valuable advice and continuous guidance. I was really privileged and honored to work under her kind supervision.

I am deeply grateful to *Prof. Dr. Doria salem Prof. of Radiodiagnosis, Faculty of Medicine, Cairo University* for her generous supervision, valuable advice, continuous encouragement and her patience and determination to produce this study.

Finally, I owe a sincere appreciation and thanks to *Dr. Moushira Dahaba*, *Head of Oral Radiology Department in Cairo University and Dr. Mary Medhat Farid, Lecturer of Oral Radiology, Ain Shams University* for their generous and continuous effort through the preparation and finishing of this study.

LIST OF CONTENTS

CONTENTS	PAGE
	NO.
INTRODUCTION	1
REVIEW OF LITERATURE	5
Classification of maxillofacial fractures	11
Soft tissue injuries	11
Alveolar and dental fractures	12
Mandibular fractures	14
Maxillary fractures	22
Zygomatic complex fractures	28
Orbital and ocular fractures	30
Frontal sinus and naso orbitoethmoidal complex	32
Gun shot injuries	33
Pediatric craniomaxillofacial fractures	35
Pan facial fractures	37
Conventional tomography	39
Dental panoramic tomography	47
Computed tomography	54
Principles of Helical CT Scanners	55

Detector Configuration	58
Scanning speed	60
The advantages of multisection scanning	63
Reconstruction Techniques	65
Isotropic Scanning	66
Image quality	67
Clinical applications	69
Radiation Dose	71
The diagnostic information provided by panoramic	73
radiographs and CT scans	
AIM OF THE STUDY	77
MATERIALS AND METHODS	78
RESULTS	88
CASE PRESENTATION	100
DISCUSSION	110
CONCLUSION	123
REFERENCES	124
ENGLISH SUMMARY	137
ARABIC SUMMARY	139

دراسة مقارنة بين التصوير ثلاثي الأبعاد بالأشعة المقطعية بالحاسوب متعددة الشرائح والتصوير القطعي الاعتيادي في تقييم كسور الوجه والفكين

رسالة مقدمة إلي كلية طب الفم والأسنان – جامعة القاهرة للحصول علي درجة الدكتوراه في في أشعة الفم

مقدمة من

الطبيب / فريد مدحت فريد

بكالوريوس طب الفم والأسنان وماجستير جراحة الفم والأسنان كلية طب الفم والأسنان – جامعة القاهرة

> كلية طب الفم والأسنان جامعة القاهرة

> > 2009

مستخلص الرسالة ((Abstract) باللغة العربية:

إن تشخيص الكسور الوجهية يتم عن طريق الدمج بين الفحص الإكلينيكي والتصوير الإشعاعي حيث أن الهدف الأساسي من تصوير المرضى ذوى الإصابات الرضحية بالوجه هو تحديد أماكن وطبيعة الكسور. إن طرق التصوير المعتادة مثل التصوير البانورامي مفيدة وغير مكلفة إلا أن هناك بعض المشكلات مثل التكبير الغير متساوي والانبعاج الهندسي بالصورة بالإضافة إلى تداخل بعض الأجسام ذات الأهمية الإكلينيكية كما شكل التصوير المقطعي بالحاسوب متعدد الشرائح القفزة في تقنيات التصوير المقطعي حيث حول التصوير المقطعي من مجرد مقاطع عرضية محورية إلى صورة ثلاثية الأبعاد بالفعل يمكن تقطيعها في أي مستوى بالإضافة إلى إظهارها كصورة مجسمة ثلاثية الأبعاد مما أدى إلى مكاسب عديدة لتقليل وقت الفحص وإمكانية زيادة الجزء المراد فحصه. هدفت هذه الرساله إلى المقارنة بين التصوير المقطعي بالحاسوب متعدد الشرائح بالإضافة إلى المراد فحصه. هدفت هذه الرساله إلى المقارنة بين التصوير المقطعي بالحاسوب متعدد الشرائح علاعتيادي في تقييم كسور الوجه والفكين في هذه الدراسة وجد أن التصوير المقطعي بالحاسوب متعد الشرائد قد أظهر قدرة أعلى على التصوير البانورامي في تحديد مختلف الكسور بينما أظهرت كلتا التقنيتين نفس النسبة في تحديد كسور جسم الفك والجار ارتفاقية وهذه الاختلافات كانت معتد بها إحصائيا فيما عدا تحديد كسور جسم الفك والجار ارتفاقية وهذه الاختلافات كانت

Arabic keywords:

الكسور الوجهية- التصوير البانورامي- التصوير المقطعي- صورة ثلاثية الأبعاد- التصوير المقطعي بالحاسوب متعدد الشرائح

- مستخلص الرسالة (باللغه الانجليزيه) :

The diagnosis of facial fractures is accomplished by a combination of clinical and imaging examinations. Conventional imaging, such as panoramic radiographs, is useful and cost effective but it is associated with some problems such as unequal magnification and geometric distortion across the image, the presence of overlapping structures. Multidetector CT has transformed CT from a transaxial crossectional technique into a true 3D imaging modality that allows for arbitrary cut planes as well as excellent 3D displays of the data volume. Multislice CT can be used to reduce scan time, reduce section collimation, or to increase scan length substantially. The purpose of this study is to compare between Multi-slice Computerized Tomography with Three Dimensional Reconstruction and Conventional Tomography in the assessment of Maxillofacial Fractures. In this study, CT showed higher percentage of detecting different fractures than panoramic modality except in body and para-symphyseal fractures where both modalities showed the same percentage. We concluded that CT images demonstrated many missed maxillo-facial fractures not seen on panoramic tomography. CT images changes the understanding of the nature of the fracture seen on panoramic tomography especially regarding displacement and comminution.

Key words

Maxillofacial fractures/ conventional tomography/ multislice CT/three dimensional reconstruction

List of figures

FIGURE 1: Diagram of vertically favorable (left) and unfavorable (right) fracture lines. Arrow indicates displacing force. Adapted from Luyk NH.88 p. 410.	15
FIGURE 2: Diagram of horizontally unfavorable (left) and favorable (right) fracture lines. Arrows indicate displacing forces. Adapted from Luyk NH.88 p. 410.	16
FIGURE 3: Percentage of mandibular fracture site distribution. Adapted from Luyk NH.88 p. 411.	18
FIGURE 4: Types of fractures: A, simple fracture; B, compound fracture; C, comminuted fracture; D, impacted fracture in right subcondylar area and pathologic fracture in the left angle area; E, direct and indirect fractures. Adapted from Luyk NH.88 p. 411.	21
FIGURE 5: Anteroposterior and lateral views of the skull showing the Le Fort classification system of maxillary fractures.	23
FIGURE 6: Le Fort classification of midfacial fractures (Ellis and Scott 2000)	25
FIGURE 7: Anatomy of the zygoma	29
FIGURE 8: Theory of tomography	41
FIGURE 9: Tomographic movements. The more complex the motion, the smaller the likelihood the x-ray beam will strike an	42

object of importance at the same tangent through the entire exposure. (Therefore blurring depends less on the orientation of	
the object under study.)	
are object under study.)	
FIGURE 10: Diagram showing the principle of broad-beam	43
tomography. Using a broad beam there will be multiple centres	
of rotation (three are indicated: •) all of which will lie in the	
shaded zone. As all the centres of rotation will be in focus, this	
zone represents the focal plane or section of the patient that will	
appear sharply defined on the resultant tomograph.	
FIGURE 11: Diagrams illustrating how the width of the focal	44
plane is governed by the amount of movement by the	
equipment. A) A large tomographic movement produces a thin	
slice. B) A small tomographic movement produces a thick slice.	
FIGURE 12: Diagrams showing the theory of narrow beam	46
rotational tomography. The tomographic movement is provided	
by the circular synchronized movement of the X-ray tubehead in	
one direction and the cassette carrier in the opposite direction, in	
the horizontal plane. The equipment has a single centre of	
rotation. The film also moves inside the cassette carrier so that a	
different part of the film is exposed to the narrow beam during	
the cycle, thus by the end the entire film has been exposed. The	
focal plane or trough (shaded) is curved and forms the arc of a	
circle.	
FIGURE 13: Diagram showing the gradual build-up of a	50
	50

cycle.	
FIGURE 14: Principles of helical CT. As the patient is transported through the gantry, the x-ray tube traces a spiral or helical path around the patient, acquiring data as it rotates. t, time in seconds (Mahesh, 2002).	55
FIGURE 15: Diagram of the slip-ring configuration. Sliding contactors permit continuous rotation of the x-ray tube and detectors while maintaining electrical contact with stationary components. (Mahesh, 2002)	65
FIGURE 16: Detector configuration. The greater number of detector rows in the scanning direction in multidetector-row computed tomography scanners helps in enhancing z-axis coverage and scanning speed. (Kalra et al, 2004)	60
FIGURE 17: Anatomic coverage. (a, b) The coverage for multisection CT (a) can be eight times longer than for Single-section helical CT (b) at the same pitch and section thickness. (c, d) To scan the same volume in the same time with single-section helical CT, one must increase the pitch (c) or section thickness (d), thereby degrading image quality. (e) To achieve the same image quality with single-section helical CT, the scanning time would have to be lengthened eightfold. (Rydberg et al, 2000).	62
FIGURE 18: X-ray beam shape. Compared with the pencil- and fan-shaped beams used in conventional and single-detector- row computed tomography scanners, multidetector-row computed tomography scanners have a cone-shaped beam with	65

multiple detector rows. (Kalra et al, 2004)	
FIGURE 19: A) Isotropic imaging. The large box symbolizes the volume data set. The smaller box symbolizes each voxel in the volume data set. Isotropic imaging is made possible with multichannel scanners. (B) Nonisotropic imaging. The large box symbolizes the volume data set. The smaller box symbolizes each voxel in the volume data set. With nonisotropic imaging the smaller box is noncuboidal. (Rydberg et al, 2003).	67
FIGURE 20: Multirow scanning offers large potential for clinical applications. (Klingenbeck-regn et al, 1999)	69
FIGURE 21: Coronal image of Multisection CT. (Rydberg et al, 2000)	70
FIGURE 22: The panoramic machine used in this study (the Orthophos XG5)	81
FIGURE 23: Showing the multislice CT machine used in this study (Activion 16)	82
FIGURE 24: Showing the diagnostic console of the multislice CT	83
FIGURE 25: Showing the axial cuts taken then the 3D reconstuction can be made and other cuts can be obtained for	83
example coronal cuts	

FIGURE 27: Bar chart showing detection of maxillary fractures by the two modalities	90
FIGURE 28: Bar chart showing detection of skull fractures by the two modalities	91
FIGURE 29: Bar chart showing detection of appearance by the two modalities	94
FIGURE 30: Bar chart showing sensitivity of the two modalities in detecting mandibular fractures	97
FIGURE 31: Bar chart showing sensitivity of the two modalities in detecting maxillary fractures	97
FIGURE 32: Bar chart showing sensitivity of the two modalities in detecting skull fractures	98
FIGURE 33: Bar chart showing sensitivity of the two modalities in detecting bone appearance	99
FIGURE 34: Panoramic radiograph showing no fractures.	100
FIGURE 35: Axial CT showing fracture of superficial and lateral walls of right maxillary sinus as well as right haemosinus and free fractured bony segments inside the sinus. Also note the fracture of the frontal and parietal bone.	100
FIGURE 36: Coronal C.T. shows fracture of the inferior wall of the orbit as well as the anterior wall of the sinus. The fracture of the frontal bone reaches anteriorly to the upper and lower	101

borders of the frontal sinus.	
FIGURE 37: 3D reconstruction shows the fronto-parietal fracture line as well as a depressed fracture of the temporal bone and the fracture of the anterior wall of the maxillary sinus	101
FIGURE 38: Panoramic radiograph of the second case showing a possible fracture of the right angle of the mandible.	102
FIGURE 39: Axial CT of the same case showing fracture of the right angle of the mandible with anterior displacement of the ramus. Note the presence of sub-cutaneous haematoma.	102
FIGURE 40: Coronal C.T. of the same case showing fracture of the right angle of the mandible with medial displacement of the body of the mandible. Note the presence of sub-cutaneous haematoma.	103
FIGURE 41: 3D reconstruction showing fracture of the right angle of the mandible starting from the distal surface of the lower right wisdom tooth and extending posteriorly and inferiorly till the angle.	103
FIGURE 42: Panoramic radiograph showing fracture of the left body of the mandible with superior displacement of the left segment.	104
FIGURE 43: Axial C.T. shows bilateral fracture of the lateral wall of the orbit and the nasal bones and the lateral walls of the maxillary sinuses as well as bilateral haemosinus of the ethmoid and maxillary sinuses and right haemosinus of the sphenoid	104