The Use of Osteograf D 700 for Ridge Preservation with and Without The Use of Collagen Membrane

A Thesis submitted to Oral and Maxillofacial Surgery Department, Faculty of Oral and Dental Medicine, Cairo University, for partial fulfillment of the requirements of the Master Degree in Oral and Maxillofacial Surgery

By

Mohamed Abdel Salam El Baz

B.D.S. (2004) -Misr University for Science and Technology

Faculty of Oral and Dental Medicine
Cairo University
2010

Supervisors

Prof. Mohamed Galal El-Behiery

Professor of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

Prof. Hala Zakarya Mahmoud

Professor of Oral Radiology
Faculty of Oral and Dental Medicine
Cairo University

بسم الله الرحمن الرحيم

((وعلمك ما لم تكن تعلم وكان فضل الله عليك عظيماً))

صدق الله العظيم سورة النساء-الآية ١١٣

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to **Prof. Mohamed Galal El-Beheiry**, Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University. I will remain grateful to him for his great help, support, and scientific supervision that enabled me to finish this work correctly.

I am very grateful to **Prof. Hala Zakarya Mahmoud**, Professor of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University for her effort and time in teaching, advising and encouraging me.

I would like to convey my sincere gratitude to **Prof. Mohamed Ekram**, Professor of Oral Radiology, Cairo University, for his generous effort, committed supervision and great support for guiding me to complete my work.

I am also grateful to **Prof**. **Hala Zaatar**, Professor of Oral Histology, Cairo University and Modern Sciences and Arts University for her unconditional support in the histological part of this thesis.

I would also like to express my sincere gratitude to **Dr. Hesham El Hawary**, Lecturer of Oral and Maxillofacial surgery, Cairo University,
for his help in making this work come out in best shape.

At last, I would like to thank all my colleagues for their guidance and support.

Dedication

To my dearest father Professor Abdel Salam El Baz, Professor of Oral and Maxillofacial Surgery, Cairo University. I owe you my whole life, you taught me everything that always makes me who I am.

To my beloved Mother, you deserve more than words to express my deepest appreciation, I am ever so grateful for the full support you gave me. I could have never achieved my goals without your advice and care; you have been always behind any success I reached.

To my sisters, Alaa and Maha - thank you for your support and care... To my lovely niece Jojo... and to the love of my life who taught me everything, without her, I'm incomplete...

LIST OF CONTENTS

	Page
List of figures	ii
List of tables	vi
Introduction	1
Review of Literature	3
Aim of the study	35
Patients and Methods	36
Results	56
Discussion	78
Summary and Conclusion	86
Recommendations	89
References	90
Arabic summary	104

LIST OF FIGURES

Fig. No		Page
Fig. (1)	Osteograf D700 in sterile vial	39
Fig. (2)	Biocollagen membrane in sterile vial	39
Fig. (3)	Radiographic stent, film holder and bean positionoer	41
Fig. (4)	Surgical tray used in preparation of the sockets in	42
	both groups	
Fig. (5)	Photograph showing atraumatic extraction using a	44
	lower molar forceps	
Fig. (6a)	Photograph showing application of Osteograf D700	45
	into the extracted socket	
Fig. (6b)	Photograph showing Osteograf D700 filling the	45
	socket to crestal bone level	
Fig. (7)	Resorbable collagen membrane covering the graft in	47
	an extracted socket	
Fig. (8)	Flap sutured by interrupted sutures using 3/0 black	47
	silk	
Fig. (9)	Soft tissue healing one week post-operative	49
Fig. (10)	Photograph showing digital Periapical radiograph	50
	taken 4 months post-operatively	
Fig. (11)	Periapical radiograph after placement of the implant	52
Fig. (12)	The 2.0mm Trephine bur used in bone core biopsy	52

Fig. (13)	Bone core biopsy taken from socket	55	
Fig. (14)	Radiograph showing immediate post-operative (Group A)	57	
Fig. (15)	Radiograph showing 2 months post-operative	57	
	(Group A)		
Fig. (16)	Radiograph showing 4 months post-operative (Group A)	58	
Fig. (17)	Radiograph showing immediate post-operative	58	
	(Group B)		
Fig. (18)	Radiograph showing 2 months post-operative	59	
	(Group B)		
Fig. (19)	Radiograph showing 4 months post-operative	59	
	(Group B)		
Fig. (20)	Digora Software measuring bone density		
Fig. (21)	Digora Software measuring bone height		
Fig. (22)	Bar chart representing mean bone density in the two		
	groups		
Fig. (23)	Line chart representing the changes by time in mean		
	bone density of the two groups		
Fig. (24)	Bar chart representing mean % changes in bone	66	
	density of the two groups		
Fig. (25)	Bar chart representing mean bone height	67	
	measurements in the two groups		
Fig. (26)	Line chart representing the changes by time in mean	68	
	bone height of the two groups		
Fig. (27)	Bar chart representing mean % changes in bone	70	
	height measurements of the two groups		

Fig. (28)	Photomicrograph showing few bone trabeculae . A	71
	traingular area showing course firbous wooven bone	
	which is starting to turn over into normal pattern	
	lamellar bone, with some osteocytes, indicative of	
	newly forming bone. On the left side, there is	
	condensation of collagen bundles which indicates an	
	active cellular and fibrillar area.	
Fig. (29)	Photomicrograph showing bone trabeculae. On the	72
	left side, there is condensation of collagen fibres,	
	along with newly formed blood vessels and some	
	scattered osteocyte, all indicating areas of newly	
	forming bone.	
Fig. (30)	Photomicrograph showing, to the left side, an area	73
	of newly formed bone, with osteocytes in their	
	lacunae. To the right side, some scattered osteocytes	
	with blood vessels interspersed between an area of	
	fibrous tissue.	
Fig. (31)	Photomicrograph showing numerous bony	75
	trabeculae. As seen, large number of osteosytes,	
	with wide bone marrow spaces, forming the	
	Haiversian pattern of bone.	
Fig. (32)	Photomicrograph showing numerous bony	76
	trabeculae with increased number of osteocytes	
	inside their lacunae, surrounding wide bone marrow	
	space filled with red type bone marrow. Also seen,	
	is the circular arrangment of the osteocytes.	

Fig. (33)	Photomicrograph showing the circular arrangment	77
	of the osteocytes, surrounding bone marrow spaces.	
	Also seen, is the resting lines of bone formation,	
	which indicates the rythmic pattern of bone	
	formation.	

LIST OF TABLES

Tab. No		Page
Tab. (1)	Medical history questionnaire	37
Tab. (2)	The means, standard devation (SD) values and	62
	results of the Students' t-test for the comparison	
	between mean bone density in the two groups.	
Tab. (3)	The mean differences, standard deviation (SD)	63
	values and results of paired t-test for the changes	
	by time in mean bone density in Group A	
Tab. (4)	The mean differences, standard deviation (SD)	64
	values and results of paired t-test for the changes	
	by time in mean bone density in group B	
Tab. (5)	The mean % changes, standard deviation (SD)	65
	values and results of Students' t-test for	
	comparison between % change in bone density	
	of the two groups	
Tab. (6)	The means, standard deviation (SD) values and	66
	results of paired t-test for the comparison	
	between mean bone height measurements in the	
	two groups.	
Tab. (7)	The mean differences standard deviation (SD)	67
	values and results of paired t-test for the changes	
	by time in mean bone height measurements in	
	Group A	

Tab. (8)	The mean differences, standard deviation (SD)	68
	values and results of paired t-test for the changes	
	by time in mean bone height measurements in	
	Group B	
Tab. (9)	The mean % changes, standard deviation (SD)	69
	values and results of Student's t-test for	
	comparison between % change in bone height	
	measurements of the two groups	

INTRODUCTION

The demand for dental implant continues to rise worldwide. This requires clinicians to give great attention and consideration to socket preservation techniques for later implant placement. The extraction of teeth results in resorption of the alveolar ridge (*Devlin E et al.*, *in 1991 and Jackson BJ et al.*, *in 2007*). This resorption occurs primarily on the buccal aspect; with ridge width most affected but ridge height is also diminished (*Douglas GL et al.*, *in 2005*).

Today, it is possible to reduce the loss of alveolar bone height and width by methods to preserve the socket at the time of extraction, thus providing a better site for implant placement.with greater bone to implant contact by allowing the insertion of wider and longer implants (*Wang HL et al., in 2004*). The healing of untreated extraction sockets results in filling of the socket area with vital bone but with a significant loss in ridge volume, which is of prime importance for future placement of implants (*Darby I et al., in 2008*).

Several socket preservation techniques are used, these techniques are based on the principle of Guided Bone Regeneration, where either resorbable or non resorbable membranes, with or without grafting materials can be used (*Krauser JT et al.*, *in 2001*).

The use of autogenous bone has always been advised, but at times, autogenous bone harvesting is not feasible, where now the alternatives are allografts, xenografts or alloplastic materials (*Minsk L et al.*, *in* 2005).

Recent advances in barrier membranes and bone grafting materials along with good surgical technique, led to predictable treatment methods for proper preservation of alveolar bone with subsequent implant placement.

REVIEW OF LITERATURE

Alveolar ridge resorption is frequently observed after tooth extraction. This resorption causes esthetic problems for conventional or implant supported prosthesis placement and surgical problems by making the placement of implants difficult or even impossible (*Callan DP et al.*, *in 2000*).

Undisturbed extraction sockets heal uneventfully with bone tissue one to two months following extraction. This healing usually occurs with marked reduction of the original height and width of the alveolar bone, which in some cases, may aesthetically compromise an implant supporting prosthesis (*Callan DP et al., in 2000*).

A study was conducted to study age changes in humans and found that the reduction in residual ridge height may be similar to disuse osteoporosis, which occurs with the complete immobilization of any bone, the effect of which causes thinning and gradual porosity in bone (*Manson JD et al., in 1962*). The importance of preserving alveolar ridge is that complete denture wearers, when implant placement was still inadvent, have a reduced biting force in comparison with their dentate counterparts. This reduced biting force, results in minimal amount of