Multidetector CT in Diagnosing Disorders of Thoracic Aorta

Essay

Submitted for partial fulfillment of Master degree in radiodiagnosis

$\mathcal{B}y$

Yasmine Nabil Moustafa Elagamy

M.B., B.Ch. Faculty of Medicine Ain Shams University

Supervised By

Prof. Dr. Maha Hussein Anwar Abdel Salam

Professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr. Ehab Mohammed Rassem

Lecturer of Radio-diagnosis Faculty of Medicine Ain Shams University

Radio-diagnosis Department Faculty of Medicine Ain Shams University 2010

دور الأشعة المقطعية المتعددة المقاطع في تشخيص آفات الشريان الأورطى الصدري

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمةمز

الطبيبة / ياسمين نبيل مصطفى العجمي بكالوريوس الطب والجراحة كلية الطب عين شمس جامعة عين شمس

تحتأشراف أد. مها حسين أنور عبد السلام أستاذ الأشعة التشخيصية كلية الطب جامعة عين شمس

د. أيهاب محمد محمود راسم مدرس الأشعة التشخيصية

كلية الطب

جامعة عين شمس

كليةالطب جامعةعير<u> </u>شمس **2010**

Contents

Contents	Page
List of Abbreviations	
List of Figures	
List of Tables	
Introduction	1
Aim of the work	3
Anatomy of the Thoracic Aorta	4
Cross sectional anatomy	10
The embryological of the aortic arches	16
Pathology of the Thoracic Aorta	19
Congenital Malformations	19
Vascular rings	19
Arch abnormalities producing compression	20
symptoms without an anatomic ring	
Cervical aortic arch	25
Aortic arch interruption / atresia	25
Coarctation of the aorta	25
Transposition of the great vessels	27
Acquired Diseases	29
Thoracic aortic aneurysms	29
Atherosclerosis	33
Dissection of the thoracic aorta	35

Intramural haematoma	38
Traumatic aortic injury	39
Penetrating atherosclerotic ulcer	39
Non-infectious aortitis	41
The postoperative aorta	42
Tumors of the aorta	42
Technique of Multidetector-row Computed	44
Tomography	
Introduction	44
Patient selection and preparation	49
Preparation for scanning	49
Contrast material	50
Importance of non-contrast and delayed CT	53
examinations	
Post processing Technique and advanced	55
display	
Recent topics concerning aortic CT	60
Pitfalls in MDCT technique	63
MDCTA Appearances of Thoracic Aortic	66
Lesions	
Congenital Malformations	66
Vascular rings	66
Cervical aortic arch	71
Supravalvular aortic stenosis	72

Coarctation of the aorta	72
Aortic arch interruption / atresia	74
Transposition of the great vessels	74
Acquired Diseases	76
Thoracic aortic aneurysms	81
Atherosclerosis	82
Dissection of the thoracic aorta	84
Intramural haematoma	90
Non-infectious aortitis	92
Penetrating atherosclerotic ulcer	92
Traumatic aortic injury	94
The postoperative aorta	95
Tumors of the aorta	
Summary and Conclusion	100
References	
Arabic Summary	

List of Abbreviations

 $3D \rightarrow three-dimensional$

 $ATAI \rightarrow acute traumatic aortic injury$

 $COA \rightarrow coarctation of the aorta$

 $CPR \rightarrow curved$ -planar reformation

 $CT \rightarrow computed tomography$

CTA → computed tomography angiography

IAA → interrupted aortic arch

IMH → intramural hematoma

MDCT → multidetector-row computed tomography

MDCTA → multidetector-row computed tomography angiography

MIP → maximum intensity projection

 $MPR \rightarrow multiplanar reformation/reconstruction$

PAU → penetrating atherosclerotic ulcer

 $SSD \rightarrow shaded$ -surface display

 $SVAS \rightarrow supraval vular a ortic stenosis$

TAI → traumatic aortic injury

 $TEE \rightarrow trans\text{-}esophageal\ echocardiography$

VE → virtual endoscopy

 $VR \rightarrow volume rendering$

List of Abbreviations

 $3D \rightarrow three-dimensional$

 $ATAI \rightarrow acute traumatic aortic injury$

 $COA \rightarrow coarctation of the aorta$

 $CPR \rightarrow curved$ -planar reformation

 $CT \rightarrow computed tomography$

CTA → computed tomography angiography

IAA → interrupted aortic arch

IMH → intramural hematoma

MDCT → multidetector-row computed tomography

MDCTA → multidetector-row computed tomography angiography

MIP → maximum intensity projection

 $MPR \rightarrow multiplanar reformation/reconstruction$

PAU → penetrating atherosclerotic ulcer

 $SSD \rightarrow shaded$ -surface display

 $SVAS \rightarrow supraval vular a ortic stenosis$

TAI → traumatic aortic injury

 $TEE \rightarrow trans\text{-}esophageal\ echocardiography$

VE → virtual endoscopy

VR → volume rendering

List of Figures

Fig. No.		Page
1	The heart and great vessels	4
2	Structure of the aorta	5
3	Branches of the aortic arch	8
4	Descending aorta and its relations	10
5	Cross sectional anatomy level T3	11
6	Cross sectional anatomy level T4	12
7	Cross sectional anatomy level T5	14
8	Cross sectional anatomy level T6	15
9	The formation and fate of aortic arches	17
10	Double aortic arch	21
11	Right arch, aberrant subclavian, left	22
	ductus	
12	Coarctation of the aorta	26
13	Transposition of the great vessels	29
14	Classifications of aortic dissections	38
15	Theories of Blunt Aortic Injury	40
16	Acute thrombosed aortic dissection	54
17	Ruptured abdominal aortic aneurysm	54
18	Endoleak from a stent-graft	55
19	Volume rendering	57
20	Sagittal oblique shaded surface display	57

Fig. No.		Page
21	virtual endoscopic image of the aortic	58
	arch	
22	Virtual endoscopic image of the aortic	59
	arch	
23	Typical motion artifact of the ascending	61
	aorta	
24	The advantages of ECG-gated aortic CT	62
25	Streak artifacts	62
26	MDCT study of 2-month-old female	64
	infant	
27	Double arches, left arch atresia.	67
28	Right arch, aberrant subclavian	68
29	Right cervical aortic arch	70
30	aortic coarctation	72
31	Transposition of great arteries	73
32	Type A interrupted aortic arch with large	74
	systemic collaterals	
33	Fusiform descending TAA	75
34	Marfan syndrome and annuloaortic	78
	ectasia	
35	Aortobronchial fistula	79
36	Aortobronchial fistula	79

Fig. No.		Page
37	Aneurysm rupture	80
38	Mycotic aneurysm	81
39	MDCT Stanford type B aortic dissection	83
	images	
40	Beak sign and cobweb sign	85
41	Stanford type B dissection	86
42	Bidirectional blood flow through the	86
	entry tear	
43	Displaced intimal calcification	88
44	Stanford type B intramural hematoma	91
45	Penetrating atherosclerotic ulcer	92
46	Penetrating atherosclerotic ulcer	93
47	periaortic hematoma	94
48	Endoleak after endovascular aortic repair	96
49	Sagittal CT scan shows an aortic tumor	99
	in the aorta	

List of Tables

Table		Page
No.		
1	Factors that may predispose to aortic	37
	dissection	
2	scan protocols for CT angiography of	49
	the entire aorta	
3	Classification Scheme for Endoleaks	98

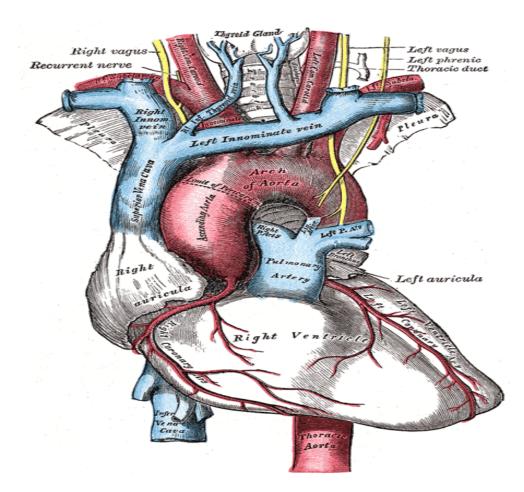
Introduction

The clinical presentation of diseases involving the thoracic aorta ranges from a large number of asymptomatic patients with a clinical undetectable thoracic aneurysm to patients with symptoms of severe chest pain as a result of acute aortic dissection. Thoracic aortic disease often remains undiagnosed until a life threatening complication occurs or the disease is discovered serendipitously on imaging studies performed for other purpose. MDCT imaging of the aorta is used to diagnose various acute and chronic conditions, including aortic aneurysm, aortic dissection, intramural haematoma, penetrating atherosclerotic ulcer, traumatic injury, rupture, inflammatory disorders and congenital malformations (*Abbara et al.*, 2007).

MDCT with a rapid bolus intravenous injection of contrast enables the fast and noninvasive evaluation of the thoracic aorta. From this data, thin sliced contagious axial images are replacing conventional angiography and now playing a dominant role in the evaluation of aortic diseases (*Koji et al.*, 2005).

MDCTA offers several advantages over conventional aortography in evaluation of the thoracic aorta. State-of-the-art MDCT scanners with improved temporal and isotropic resolution, enable volumetric acquisition that provides clear

anatomic delineation of thoracic aorta, its tortuous branches and adjacent aneurysm and pseudo aneurysms. In contrast with the projectional technique of conventional aortography, these frequently overlapping structures can affect visualization and delineation of anatomic relationships. In addition MDCTA allows simultaneous delineation of true and false luminal flow channels in thoracic aortic dissections, intramural hematomas communicating with the aortic lumen, as well as direct visualization of the aortic wall and non communicating intramural hematomas (*Rubin et al.*, 2006).


Recent progress in MDCT has enabled detailed examination of the aorta and its branches. MDCT can evaluate the status of the vascular wall, including calcification, plaque, and inflammation. It can provide information on the vascular lumen. Mural thrombus or the extension of a thrombosed false lumen can also be evaluated accurately (*Takase et al.*, 2006).

Aim of the work

The aim of this study is to emphasize the role of MDCT in diagnosis of different thoracic aortic diseases.

Anatomy of the thoracic aorta

The aorta is the main systemic artery of the body (Fig. 1). It arises from the aortic orifice of the left ventricle behind the third left intercostal space at the margin of the sternum. It ends on the anterior surface of the fourth lumbar vertebra by dividing into right and left common iliac arteries. It is divided into thoracic and abdominal portions (*Romanes*, 1997).

<u>Figure (1</u>): The heart and great vessels (*Quoted from Williams et al.*, 2005).