Selective Chromogenic Agar Medium for Detection of Vancomycin-Resistant Enterococcus species

Thesis
Submitted for Partial Fulfillment of M.Sc. Degree in
Clinical and Chemical Pathology

By

Noha Alaa El-Din Mohammed Mohammed Fahim

M.B., B.Ch.
Faculty of Medicine, Ain Shams University

Supervised by

Professor/ Hadia Hussein Bassim

Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University

Professor/ Eman Mohamed Kamel

Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University

Doctor/ Hala Badr El-Din Ali

Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University

> Faculty of Medicine, Gin-Shams University

> > **2010**

Thanks first and last to Allah as we owe him for his great care, support and guidance in every step in our life.

I would like to express my thanks and gratitude to Prof. Dr. Hadia Hussein Bassim Professor of Clinical and Chemical pathology Faculty of Medicine, Ain Shams University, for her Kind supervision and indispensable help.

I would like to express my deep thanks and gratitude to Prof. Dr. Eman Mohamed Kamel Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University, for her supervision, help and support

I would like to express my gratitude to Dr. Hala Badr El-Din Ali Assistant Professor of Clinical and Chemical pathology Faculty of Medicine, Ain Shams University, for her indispensable help, valuable advices and encouragement, offering all the facilities to finish this work.

Noha Haa El-Din 2010

Contents

	Page
Acknowledgement	
List of tables	
List of figures	
Introduction	1
Aim of the work	4
Review of literature	2
Enterococci	5
Enterococcal Infection	15
Antimicrobial Resistance In Enterococci	21
Vancomycin Resistant Enterococci	33
Mechanism of action of vancomycin	34
Genetic mechanism of vancomycin resistance	35
Intrinsic glycopeptide resistance	37
Acquired glycopeptide resistance	39
Epidemiology Of VRE	49

Contents (Cont..)

	Page	
Laboratory Diagnosis	60	
Laboratory diagnosis of Enterococcus species	60	
Laboratory diagnosis of vancomycin-resistant <i>Enterococci</i> (VRE)	72	
Prevention And Control Of VRE	82	
Treatment Of Enterococcal Infections	88	
Materials and methods	99	
Results	123	
Discussion	139	
Summary and conclusion	149	
References		
Arabic summary		

INTRODUCTION

Enterococcus species are members of the normal intestinal flora and are the most common aerobic grampositive cocci found in the large bowel of humans. They may be associated with invasive disease. Common sites of clinical infection include the urinary tract, the blood stream, and intraabdominal or pelvic wounds (*Treitman et al.*, 2005).

In recent years, their clinical importance has been amplified by an increased resistance to antimicrobials and, in particular, an acquired resistance to glycopeptides first documented in 1988 (*Cuzon et al., 2008*). Since this first reported outbreak, vancomycin-resistant *Enterococci* (VRE) has become a common cause of health care associated infection across many parts of the world (*Top et al., 2008*).

Two clinically relevant species, *Enterococcus faecalis* and *Enterococcus faecium*, have been shown to acquire resistance to glycopeptides and account for a majority of enterococcal infections (*Treitman et al., 2005*). Several genes encode resistance to glycopeptides; however Van A and Van B are of greatest concern. Van A is transposon mediated and confers inducible high-level resistance to both vancomycin and teicoplanin, whereas Van B can be plasmid or chromosomally

mediated and confers moderate to high resistance vancomycin only (Courvalin, 2005).

The clinical impact of infection by vancomycin-resistant Enterococci (VRE) has been examined in several studies, with the most notable consequences being increases in mortality, length of hospital stay, and cost of hospitalization (Ledeboer et al., 2007).

Management of a VRE outbreak requires strategies to contain cases and decrease rates of transmission, including isolation of VRE infected or colonized patients (Zirakzadeh and Patel, 2006). Early detection of VRE in fecal specimens is important for nosocomial prevention measures, epidemiologic infectious disease follow-up, and also prevention of vancomycinresistant Staphylococcus aureus emergence (Delmas et al., 2007).

There is a continuous need for improvement of culture methods for VRE detection, especially for those clinical microbiology laboratories that do not have access to nucleic acid amplification technologies (Paule et al., 2003). Recently, chromogenic media incorporating chromogenic enzymatic substrates and a variety of antimicrobial agents (chrom ID VRE, CHROM agar GRE) have become available for VRE detection in one single step, but only Chrom ID VRE containing vancomycin in a concentration of 8µg/ml, can

additionally directly differentiate between vancomycinresistant E. faecium and E. faecalis strains from clinical specimens based on distinct colony color (Kuch et al., 2009).

AIM **O**F **T**HE **W**ORK

The aim of this study is to evaluate the usefulness of chromID VRE agar for rapid isolation of Vancomycin-resistant *Enterococcus* from stool samples or rectal swabs of immunocompromised patients in comparison with modified bile esculin agar.

Enterococci

Taxonomy:

The name "Enterococcus" is derived from the French word "Entérocoque", which was used at the turn of the century to describe the enteric origin of this gram-positive coccus (Murray, 2000).

Enterococci were originally classified as enteric grampositive cocci and later included in the genus Streptococcus. In the 1930s, with the establishment of the Lancefield serological typing system, Enterococci were classified as group D Streptococci and were differ-rentiated from the nonenterococcal group D Streptococci such as Streptococcus bovis by distinctive biochemical characteristics. In the 1980s, based on genetic differrences, Enterococci were removed from the genus Strep-tococcus and placed in their own genus, *Enterococcus*. The previously used species designations such as faecalis, faecium, durans, and so forth were retained but were preceded by the genus name Enterococcus in place of Streptococcus (Cetinkaya et al., 2000).

The taxonomy of *Enterococcus* species has undergone considerable change since the mid-1980s. Before the advent and widespread use of genetic techniques for taxonomic analysis, Enterococci were distinguished from Streptococci

and related taxa by the ability to grow at 10°C and 45°C, growth in the presence of 6.5%NaCl, and at pH 9.6, ability to hydrolyze esculin in the presence of 40% bile, and production of pyrrolidonyl arylamidase (PYR). More than 90% of strains also contained the Lancefield group D lipoteichoic antigen in their cell wall. Taxo-nomic studies have subsequently revealed species that are members of the genus *Enterococcus* by genetic criteria, but that lack many of the phenotypic charac-teristics typical of the genus. Fortunately, most of these species are not commonly found in human clinical specimens (Koneman et al., 2006a).

Natural habitat:

Several intrinsic characteristics of the *Enterococci* allow them to grow and survive in harsh environment and to persist almost everywhere (Teixeira et al., 2007). Enterococci can be found in soil, on plants, in milk products, other foods and in high numbers, as part of the normal microflora in the gastrointestinal tract as well as the faeces of vertebrates (Domig et al., 2003b). But they may also colonize the upper respiratory tracts, biliary tracts, and vaginas of otherwise healthy persons. The isolation of clinical isolates of Enterococci generally denotes colonization rather than infection (Zhanel et al., 2001).

The prevalence of the different enterococcal species appears to vary according to the host and is also influenced by age, diet, and other factors that may be related to changes in the physiologic conditions (*Teixeira et al.*, 2007).

Enterococcal species:

Enterococcus faecalis and Enterococcus faecium are the predominant enterococcal species identified clinical in microbiology laboratories. Historically, these laboratories report that 80 to 90% of Enterococci are E. faecalis, whereas E. faecium accounts for 5 to 10% of Enterococci. The E. durans, E. avium, E. raffinsus, E. gallinarum, and E. casseliflavus are reported much less frequently than E. faecalis and E. faecium (Chaudhary et al., 2007).

Over the past few years, several new entero-coccal species have been described from human clinical sources (i.e., E.gilvus, E.pallens, CDC PNS [for probable new species]-E1, CDC PNS-E2, CDC PNS-E3), animals (i.e., E.canis, E.villorum [same as E.porcinus], E.ratti, E.asini, E.phoeniculicola), environment (i.e., E.haemoperoxidus, E.moraviensis). Based on their phenotypic characteristics, the *Enterococci* are divided into 5 phenotypic groups (Table 1). With the help of molecular taxonomic techniques, some former Enterococcus species have been reclassified or found to be the same as previously recognized species. For example, E. seriolicida was found to be

identical to Lactococcus garvieae, E.flavescens was shown to be the same as E.casseliflavus, and E.solitaries was to be identical to Tetragenococcus halophilus (Koneman et al., 2006a).

Different enterococcal species (Koneman et al., **Table (1)**: 2006a)

GROUP/Species	Comments
GROUP1	
E.avium	Isolated from avian, canine, and human gastrointestinal tracts; strains may carry both Lancefield group D and group Q carbohydrate antigens; this species (and <i>E.malodoratus</i>) are the two enterococcal species that produce H ₂ S. <i>E. avium</i> has been isolated from cases of bacteremia and osteomyelitis.
E.gilvus	New species described in 2002; originally isolated from a bile specimen of a patient with cholecystitis.
E.malodoratus	Isolated from Gouda cheese and unpasteurized milk products; name means ill "smelling"; also produces $\rm H_2S$.
E.pallens	New species described in 2002; isolated from a peritoneal dialysate specimen of a patient in whom peritonitis developed from a perforated intestine.
E.pseudoavium	Genetic relatedness studies and certain phenotypic characteristics differentiate this species from <i>E. avium</i> ; type strain isolated from a case of bovine mastitis.
E.raffinosus	Originally considered to be related to <i>E. avium</i> (along with <i>E. solitaries</i> and <i>E. pseudoavium</i>); named for its ability to produce acid from raffinose; recovered from human infections, including blood cultures, urine, abscesses, and vertebral osteomyelitis.
E.saccharolyticus	Originally called <i>Streptococcus saccharolyticus</i> ; described a group of <i>S. bovis</i> -like strains recovered from cows; genetic analysis showed that this organisms is more closely related to the <i>Enterococci</i> than the <i>Streptococci</i> ; has certain phenotypic characteristics that are similar to <i>Enterococcus</i> species (eg., growth at 10 °C and 45 °C, growth in 6.5%NaCl), but does not react with group D antisera; proposed that this species be moved from the viridians <i>Streptococcus</i> group to the genus <i>Enterococcus</i> as <i>E. saccharolyticus</i> .
Enterococcus sp. CDC PNS-E-3	CDC "proposed new species," isolated from brain tissue obtained from an 11-month-old patient in Honolulu, Hawaii, in 2001.
GROUP 2	, , , , , , , , , , , , , , , , , , , ,
E.faecalis	Most frequent isolate from human specimens and from the human gastrointestinal tract; also found in the intestinal tracts of poultry, cattle, pigs, dogs, horses, sheep, and goats.
E.faecium	Found in human clinical specimens; generally more resistant to antimicrobial agents than <i>E. faecalis</i> ; also found in the gastrointestinal tracts of various species of animals.
E.casseliflavus	Recovered from plants, soil, and rarely, from the feces of chickens; originally classified as a subspecies of <i>E. faecium</i> ; produces a yellow pigment and is also motile. This organism is an opportunistic agent in human infections and has been isolated from patients with bacteremia.
E.gallinarum	Isolated from chicken feces; originally classified as <i>S. gallinarum</i> "chicken group D"; one of the two motile <i>Enterococcus</i> species; has also been isolated from an infection in a hemodialysis patient, as a cause of native-valve endocarditis, and from blood cultures.
E.mundtii	Yellow-pigmented non motile organism; isolated from plants, soil, and the gastrointestinal tracts of cattle, pigs, and horses; named after J.O. Mundt, an

GROUP/Species	Comments
	American microbiologist. This species has been isolated from a human thigh
	abscess and from an operatively obtained sinus mucosal specimen.
E.haemoperoxidus	New environmental enterococcal species described in 2001; isolated from
	surface waters, swimming pools, and drinking water in the North Moravia
	region of the Czech Republic.
Enterococcus sp.	CDC "proposed new species," isolated from blood cultures of a patient in
CDC PNS-E2	Los Angeles in 1997
GROUP 3	
E.dispar	Species originally thought to be a biochemical variant of E. hirae, but
	analysis of 16S rRNA indicated that this organism is indeed a previously
	undescribed species; recovered from human specimens, including stool and
	synovial fluid.
E.durans	This species is found mainly in milk and other dairy products and is a rare
	clinical isolate. In 2004 E. durans was isolated as a cause of native-valve
	endocarditis
E.hirae	Causes growth depression in chickens; isolated from chicken drops and feces,
	and the gastrointestinal tracts of cattle, pigs, dogs, horses, sheep, goats, and
	rabbits; type strain (E. hirae ATCC 8043) has complex nutritional
	requirements and is used in the food industry as a bioassay organism for
	amino acids and vitamins. E. hirae was isolated from the blood of a 49-year-
	old patient with end-stage renal disease who was undergoing hemodialysis.
E.ratti	Described in 2001, this new species was originally isolated from the
	intestines and feces of rats with diarrhea.
E.villorum	Isolated from the gastrointestinal tract of dogs; phenotypically identical with
	E. porcinus, which is considered as a junior synonym of E. villorum and was
	originally isolated from the intestines and feces of pigs with diarrhea.
GROUP 4	
E.asini	Described in 1998, this species is found in the cecum of donkeys; most
	closely related to E. avium, E. pseudoavium, and E. faecium.
E.cecorum	Newly reclassified streptococcal species found in the intestines of chickens;
	lacks the group D antigen, is PYR-negative and is unable to grow in 6.5%
	NaCl broth; similar to E. columbae, it may be confused with E. avium and
	with S. bovis. E. cecorum has been isolated as a cause of peritoneal dialysis-
	associated peritonitis, recurrent bacteremic peritonitis, and spontaneous
	bacterial peritonitis with empyema, and has been isolated from blood cultures
	of a patient with severe malnutrition.
E.sulfureus	Newly described yellow-pigmented species; recovered from plants; has not
	yet been isolated from humans.
E.phoeniculicola	Described in 2003, this species is found in the preen glands of wild red-billed
	Woodhoopoes; does not grow on BE agar or in 6.5% NaCl broth.
Enterococcus sp.	CDC "proposed new species," isolated from the blood of a patient in
CDC PNS-E1	Evanston, Illinois, in 1991
GROUP 5	
E.columbae	Newly reclassified streptococcal species isolated from the intestinal tract of
	pigeons; closely related to E. cecorum and E. avium; characterized by being
	PYR-negative and unable to grow in 6.5% NaCl broth.
E.canis	Originally isolated from a dog with chronic otitis externa; probably a resident