ION-EXCHANGERS PRODUCTION FROM SOME AGRICULTURAL WASTES

By

Alaa El-Din Mohamed El-Ghamry Hassan

B.Sc. in Chemistry and Physics, Faculty of Education Ain Shams University, 1984 Master in Environmental Sci., Ain Shams University, 2000

A Thesis Submitted in Partial Fulfillment
of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Science

Department of Basic Science Institute of Environmental Studies & Research Ain Shams University

ION-EXCHANGERS PRODUCTION FROM SOME AGRICULTURAL WASTES

By

Alaa El-Din Mohamed El-Ghamry Hassan

B.Sc. in Chemistry and Physics, Faculty of Education Ain Shams University, 1984 Master in Environmental Sci., Ain Shams University, 2000

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science Has Been Approved by:

- **1-Prof. Dr. Ahmed Momen El-Masry:** Professor of Cellulose and Paper Chemistry- Faculty of Science Zagazig University
- **2-Prof. Dr. Amin Abd El-Maksoud Afify:** Professor of Organic Chemistry-Faculty of Science-Ain shams University
- **3- Prof. Dr. Mohamed Y. El-Kady:** Professor of Organic Chemistry Faculty of Science Ain shams University
- **4- Dr.Taha A. Azim M. A. Razak:** Associate Prof. in Environmental Basic Science Department Institute of Environmental Studies and Research-Ain Shams University

ION-EXCHANGERS PRODUCTION FROM SOME AGRICULTURAL WASTES

By

Alaa El-Din Mohamed El-Ghamry Hassan

B.Sc. in Chemistry and Physics, Faculty of Education Ain Shams University, 1984 Master in Environmental Sci., Ain Shams University, 2000

A Thesis Submitted in Partial Fulfillment of The Requirement for the Doctor of Philosophy Degree In Environmental Science

Department of Basic Science - Institute of Environmental Studies & Research-Ain Shams University

Under The Supervision of:

- **1-Prof. Dr. Mohamed Y. El-Kady:** Professor of Organic Chemistry-Faculty of Science Ain shams University
- **2-Prof. Dr. A.M.A.Nada:** Head of Cellulose and Paper Department National Research Center- Dokki Egypt
- **4- Dr.Taha A. Azim M. A. Razak:** Associate Prof. in Environmental Basic Science Department Institute of Environmental Studies and Research-Ain Shams University

Acknowledgment

First and foremost, I would like to thank **Allah** for helping me to accomplish this work.

I would like to express my sincere thanks to the soul of Prof. Dr. **Abd-Alla Mohamed Abd-Alla Nada**, Head of Cellulose and Paper department, National Research Center, for his unlimited and effective help, supervision, precious criticism and his great efforts in the selection of raw material, his valuable point of views as an expert in the field of cellulose.

It gives me great pleasure to express my deepest gratitude and thanks to Prof. Dr. **Mohamed Y. El-Kady**, Professor of Organic Chemistry Department of Chemistry, Faculty of Science, Ain Shams University for his interest, encouragement, supervision valuable discussion and guidance to the end of this work.

I wish to express my sincere gratitude to Dr. **Taha A.Azim M. A.Razak**, Associate Professor in Department of environmental basic Sciences, Institute of Environmental studies and Research, Ain Shams University for his valuable suggestions, continuous guidance and advice during the course of this study.

A special word of thanks to Dr. **Mohamed Abbas**, Micro Analytical center, Cairo University, for his guidance and advice.

Finally thanks to all those who helped me in the formulation and execution of this work.

ABSTRACT

The aim of this work is to decrease the environment pollution which caused by burning the agricultural wastes and utilization of some agricultural residues in the production of a new cellulosic materials. Wastes of banana leaves and reeds are used in our study to produce cellulose.

Cation exchangers were prepared by phosphorylation, sulfonation and phosphosulfonation of the untreated and treated banana leaves raw material or reeds resin (with different concentrations of potassium permanganate). Ion exchange capacity of different heavy metals (copper, nickel, cadmium and lead) by the prepared cation exchangers is investigated. Treated phosphosulfonated bleached banana leaves pulp cation exchanger resin has the higher efficiency towards different metal ions uptake, more than both the phosphorylated and the sulfonated bleached banana leaves pulp. Treatment of banana leaves and its derivatives (resin) with different concentrations of potassium permanganate before phosphorylation, sulfonation phosphosulfonation processes increases its efficiency towards metal ions up take.

The molecular structure of bleached banana leaves pulp and its derivatives were investigated by the infrared spectroscopy. New bands were seen for the phosphorylated banana leaves at 1200 and 962 cm⁻¹, also, for the sulfonated banana leaves at 1400 and 600 cm⁻¹ which can be attributed to the formation of C-O-P and C-O-S bonds for the two derivatives respectively.

Thermal analysis of bleached banana and its derivatives gave some information on the molecular structure of lignocelluloses material.

CONTENTS

Title	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Chemistry of Cellulose	3
2.2. α , β- and γ –Cellulose	7
2.3. Hemicellulose	7
2.4. Lignin	10
2.5. Pulping Processes	12
2.5.1. Conventional Pulping Processes	12
2.5.1.1. Mechanical Pulping	13
2.5.1.2. Chemical Pulping	13
2.5.1.2.1. Alkaline Pulping	13
2.5.1.2.1.Sulfite Pulping	14
2.5.1.2.3. Peroxy acid pulping as an oxidative	14
delignification system	
2. 5. 2. Chemistry of peracids	14
2.5.2.1. Reactions of Peroxyacids with lignin	16
2.5.2.2. Pulping with peroxy acids	16
2.6. Bleaching Processes	17
2.6.1. Reactions of lignin during bleaching	17
2.6.2. Oxygen-based chemicals for pulp bleaching	18
2.6.2.1. Oxygen bleaching practices and benefits	18
2.6.2.2. Using hydrogen peroxide in pulp bleaching	19
2.6.3. Hypochlorite Bleaching	19
2.7. Cellulose Derivatives	20
2.7.1 Cellulose ester	22

Title	Page	
2.7.1.1. Cellulose organic ester	22	
2.7.1.1.1. Cellulose acetate	22	
2.7.1.2. Cellulose inorganic esters	23	
2.7.2. Cellulose ethers	24	
2.7.2.1. Carboxymethylcellulose (CMC) and mixed ethers	24	
2.7.3. Cyanoethylcellulose	25	
2.8. The Agricultural wastes problem	26	
2.8.1.Harms resulted from Burning the Agricultural wastes	26	
2.8.2.The consequences of un-utilized Agricultural wastes	27	
2.8.3.How to utilize from the Agricultural wastes	27	
2.9. Environmental pollution with heavy metals	31	
2.9.1. Heavy metals content in water	34	
2.9.2. Heavy metals in fresh water	35	
2.9.3. Heavy metals in wastewater	35	
2.9.4. Heavy metal contents in soils	38	
2.10 Ion Exchangers	40	
2.10.1. Uses of ion exchange celluloses	41	
2.10.1.1. Softening water	41	

Title	Page	
2.10.1.2. Dealkalization	42	
2.10.1.3. Demineralization	42	
2.10.1.4. Condensate polishing	43	
2.10.1.5. Nitrate removal	43	
2.10.1.6. Water treatment radioactive	43	
2.10.1.7. Corrosion inhibitor chromate recovery	43	
2.10.1.8. Chromate recovers	43	
2.10.1.9. Rinse- water recycling	44	
2.10.1.10. Chemical processing analysis	44	
2.10.1.11. Purification	44	
2.10.1.12. Ion retardation	44	
2.10.1.13. Desiccation	45	
2.10.1.14. Glucose-fructose separation	45	
2.10.1.15.Analysis	45	
2.10.1.16. Medicine	45	
2.10.1.17 Pharmaceutical	45	

Title	Page
2.11. Infrared spectroscopy for cellulose	47
2.11.1. Spectroscopic studies of Lignin	47
2.11.2. Spectroscopic studies of Hemicellulose	48
2.12. Thermal behavior of lignin from waste black pulping liquors	48
3. AIM OF THE STUDY	49
4. EXPERIMENAL	50
4.1. Raw Material	50
4.1.1. Analysis of Raw Material	50
4.1.1.1. Moisture percent (Dry content)	50
4.1.1.2. Resin and wax Determination	50
4.1.1.3. Ash-determination	51
4.1.1.4. Lignin determination	51
4.1.1.5. Pentosane Estimation	52
4.1.1.6 Hollocellulose Estimation	54
4.1.1.7. Alpha – Cellulose Estimation	54
4.2. The treatment with KMnO ₄	55
4.3. Pulping of the raw material	55
4.3.1. Treatment of banana leaves pulp with KMno ₄ solution	56
4.4. Bleaching	57
4.4.1. Preparation of treated bleached banana leaves pulp	57
4.5. Preparation of phosphorylated and sulfonated banana leaves pulp and bleached	57

Title	Page
4.6 Estimation of phosphorus and sulfur in the prepared	58
resin	
4.7. Adsorption of metal ions (ion exchange	58
4.8. Infrared Spectroscopy	58
4.9. Thermogravimetric and differential thermal analysis	58
5. RESULTS AND DISCUSSION	59
5.1. Banana leaves analysis	59
5.2. Ion exchangers properties	61
5.2.1. Effect of incorporation of phosphate group on their	61
efficiency of the produced ion exchanger.	
5.2.2. Effect of incorporation of sulfate group on their	63
efficiency of the produced ion exchanger.	
5.2.3. Effect of incorporation of phosphosulfonate group	65
on their efficiency of the produced ion exchange.	
5.3. Treatment with potassium permanganate (KMnO ₄)	71
5.3.1. Effect of the phosphorylated treated bleached	
banana leave pulp on efficiency of the produced	
ion exchanger	71
5.3.2. Effect of the sulfonated treated bleached banana	73
leaves pulp on efficiency of the produce ion	
exchanger on efficiency of the produce ion exchanger	
5.3.3. Effect of the phosphosulfonated treated bleached	75
banana pulp on efficiency of the produced	
ion exchanger	

Title	Page
5.4. Effect of incorporation of different functional groups	
of the treated bleached banana leaves pulp on	
efficiency of the produced ion exchanger.	77
5.5. The comparison between untreated and treated banana	
leaves that incorporated with different functional	80
groups	
6. Infrared spectroscopy	88
6.1. Infrared spectroscopy of banana leaves raw material,	
unbleached	
and bleached banana leaves pulp	88
6.2. Infrared spectroscopy of cellulose and its derivatives	94
7. Thermal analysis	104
7.1. Thermal analysis of banana leaves (R.M.), unbleached	
and bleached banana leaves pulp.	104
7.2. Differential thermal analysis (DTA).	108
7.3. Thermal analysis of bleached banana leaves pulp and	
its derivatives	114
7.4. DTA of bleached banana leaves pulp and its	117
derivatives	
SUMMARY AND CONCLUSION	119
REFERENCES	123
ARABIC SUMMARY	

LIST OF TABLE

Title of table	Page
Table (1): Chemical analysis data of banana leaves (raw material) unbleached and bleached pulp	59
Table (2) : Shows ion exchange of banana leaves (R.M.), phosphorylated banana leaves raw material, unbleached and bleached banana leaves pulp	61
with different metal ions.	
Table (3): Shows ion exchange of sulfonated banana leaves	63
(R.M.) unbleached bleached banana leaves	
pulp with different metal ions	
Table (4): Shows ion exchange of phosphosufloante banana	65
leaves (R.M.), unbleached and bleached banana leaves pulp with different metal ions.	
Table (5) : Shows the effect of the incorporated different functional groups in bleached banana pulp on	67
the	
metal ions uptake.	
Table (6): Phosphate and sulfate contents in the bleached	67
banana leaves pulp of the cation exchangers.	
Table (7): The effect of the phosphorylated treated bleached	71
leaves pulp on the metal ions uptake.	7.0
Table (8) : The effect of the sulfonated treated bleached leaves	73
pulp on the metal ions uptake.	75
Table (9): The effect of the phosphosulfonated treated bleached banana leaves pulp on the metal ion uptake.	75
Table (10): Shows effect of the different functional	77
groups	, ,
of the treated bleached banana leaves pulp with 0.8 M (KMnO4) on efficiency of the produced cation exchanger.	
Table (11) : Shows effect of the different functional groups of the treated bleached reeds leaves pulp with 0.8 M (KMnO4) on efficiency of the produced cation exchanger.	79

Title of table	Page
Table (12): Present values of untreated and treated banana leaves raw material that is incorporated with	81
different functional groups.	0.2
Table (13): Present values of untreated and treated (with	83
0.8 M of KMnO4) banana leaves pulp that is	
incorporated with different groups.	85
Table (14): Present values of untreated and treated (with 0.8 M of KMnO4) banana leaves pulp bleached	63
that is incorporated with different groups.	
Table (15) : Relative absorbances of different bands in	89
banana pulp.	
Table (16): Relative absorbance of some bands in untreated	92
and treated banana leaves bleached pulp with	
different concentrations of $KMnO_4$ (0.2-0.8)	
M	
Table (17): Relative absorbance of different characteristic	95
bands of the bleached banana leaves pulp and	
its derivatives.	
Table (18): Relative absorbance intensity of other bands	99
of	
bleached banana leaves pulp and its	
derivatives. Table (10): The relative cheerbanes of derivatives of the	100
Table(19): The relative absorbance of derivatives of the banana leaves raw material.	100
Table (20): The relative absorbance of banana leaves raw	102
material and its derivatives.	102
Table (21) : Minor and major decomposition temperatures	105
of different pulps of banana leaves.	100
Table (22): Activation energies of the different pulp.	108
Table (23): The minor and major decomposition	110
temperatures and	
weight loss of untreated and treated pulps.	
Table (24): The thermal decomposition of bleached	
banana	
leaves pulp, phosphorylated, sulfonated and phosphosulfonated bleached banana leaves	114
pulp.	114
րար.	

LIST OF FIGURE

Title of figure	page
Figure (1): Schematic diagram of crystalline and	4
amorphous region.	
Figure (2): Intramolecular hydrogen bonds in the cellulose.	5
Figure (3): Rod-like chain structure of cellulose molecule	6
Figure (4): Hemicellulose sugars.	9
Figure (5): Structure of hemicellulose.	9
Figure (6): Schematic structure of spruce lignin.	11
Figure (7): Schematic diagram showing pathways of pollutants those reach the soil from industrial activities.	33
Figure (8): Histogram shows effect of incorporation of phosphate group on their efficiency of the produced	
ion exchanger with different metal ions. Figure (9): Histogram shows effect of incorporation of sulfate group on their efficiency of the produced ion exchanger with different metal ions.	62 64
Figure (10): Histogram shows effect of incorporation of phosphosulfate group on their efficiency of the produced ion exchanger with different metal ions.	66
Figure (11): Histogram shows effect of incorporated Different Functional group in bleached banana	
leaves pulp on the metal ions uptake.	68
Figure (12): shows the phosphate and a sulfate content in the bleached Banana leaves pulp of the cation exchanger.	69
Figure (13): banana leaves phosphate and banana leaves	70
sulfate.	
Figure (14) : The effect of the phosphorylated treated (with KMnO ₄₎ bleached leaves pulp on the metal ion uptake.	72

Title of figure	page
Figure (15): The effect of the sulfonated treated (with KMnO ₄) bleached leaves pulp on the metal ions uptake.	74
Figure (16): The effect on the phosphosulfonated treated (with KMnO ₄) bleached leaves pulp on the metal ions uptake	76
Figure (17): shows effect on the different functional group of the treated bleached banana leaves pulp with 0.8 KMnO ₄ on efficiency of the produced cation exchanger.	78
Figure (18): shows effect on the different functional groups of the treated bleached reeds pulp with 0.8 KMnO ₄ on efficiency of the produced cation exchanger.	80
Figure (19): shows values of the untreated and treated banana leaves that incorporated with different functional groups.	82
Figure (20): presents values of untreated and treated banana leaves pulp that incorporated with different functional groups.	84
Figure (21): presents values of untreated and treated banana leaves pulp that is incorporated with different functional groups.	86
Figure (22): infrared spectra (1) raw material banana leaves, (2) unbleached and (3) bleached banana leaves pulp.	91
Figure (23): infrared spectra of (a) bleached banana leaves, (b) treated with 0.2 M, © treated with 0.4 M, (d) treated with 0.6 M and (e) treated with 0.8 M (KmnO ₄).	93
Figure (24): Infrared spectra of (1) bleached banana leaves pulp, (2) sulfonated, (3) phosphorylated and (4) phophosulfonate bleached banana leaves Pulp.	98
Figure (25): Infrared spectra of phosphorylated (1) raw material, (2) unbleached pulp, (3) bleached pulp and (4) 0.8 M treated bleached banana leaves pulp.	103