Radiological Evaluation of Postoperative Complications of Total Hip Replacement

Essay

Submitted for partial fulfillment of master degree in Radiodiagnosis

Presented by

Fady Mamdouh Fawzy Tadros

M.B.B.Ch Resident of Radiodiagnosis Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Omar Hussein

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. Reem Hassan Bassiouny

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2010

Acknowledgment

I am greatly indebted to **Prof. Dr. Omar Hussein**, Professor of radio diagnosis, Ain Shams University, for his kind guidance, great help and continuous support.

Hassan Bassiouny, Lecturer of radio diagnosis, Ain Shams University, she assisted me in assembling the finest details of this work and gave me from her time, knowledge and sincere encouragement what is beyond most wild hopes.

Fady Mamdouh

CONTENTS

	Pa	ige
-	Abbreviations	<i>I</i>
_	List of figures	.II
_	Introduction	1
_	Aim of the work	4
_	Anatomy of the hip joint	5
_	Imaging of the hip joint	13
-	Types of total hip replacement	27
-	Complications of total hip replacement	37
-	Radiological assessment of complications	47
	Post operative assessment	47
	ACR appropriateness criteria	58
	Imaging of complications	61
-	<i>Summary</i>	132
_	References	135
_	Arabic summary	

Abbreviations

o AP Antro posterior

o BMD Bone mineral density

o CRP C-reactive protein

o CT computed tomography

o DEXA dual energy x ray absorptiometry

o DVT Deep venous thrombosis

o ESR Erythrocyte sedimentation rate

o FDG Flurodeoxyglucose

o HO Heterotopic ossification

o MARS Metal artifact reduction sequences

o MDP Methylenediphosphonate

o MRI Magnetic imaging resonance

o PACU Postanesthesia care unit

o PE Pulmonary emboli

o PET Positron emission tomography

o PMMA Polymethylmethacrylate

o PPI Periprosthetic infection

o RRL Relative radiation level

o SPECT Single photon emission computed tomography

o THA Total hip arthroplasty

o THR Total hip replacement

o US Ultrasonography

o WBC White blood cells

List of Figures

Fig	Description	Page
1	Right hip-joint from the front	6
2	The hip-joint from behind	6
3	ligament of the head of femur attaching to the fovia of the head of femur	7
4	muscles causing movement, blood supply and nerve supply of the hip joint	12
5	A .Patient positioning for anteroposterior (AP) hip radiograph. b AP hip radiograph	14
6	plain radiograph (AP) showing normal anatomy of hip joint	15
7	Anatomy of the pelvis on selected transverse 1.25 mm CT sections and coronal reformatted images	17
8	Plain radiograph of the pelvis with Corresponding bone scintigraph	19
9	axial cut showing normal MRI anatomy of the right hip joint with diagrammatic illustration	22
10	Coronal T1-weighted MRI of a left metalon- metal total hip arthroplasty	25
11	Coronal T1 MRI (left) and plain radiograph (right) of a titanium stem with a ceramic bearing	26
12	AP view of the pelvis demonstrating bilateral cemented acetabular and femoral components	32
13	Anteroposterior view of a right hip showing an uncemented acetabular and femoral component	33
14	AP radiograph of a right hip demonstrates a tapered, uncemented femoral stem	33
15	AP radiograph of a right hip illustrating a cemented acetabular and a cemented composite beam femoral stem (Charnley)	34
16	Anteroposterior radiograph of a left hip demonstrating an uncemented femoral stem with a proximal collar	34
17	Illustration of the lateral inclination of an acetabular component	47
18	Illustration of an anteversion of an acetabular component	48

19	Image from a patient who had a normal total hip arthroplasty	48
20	Illustration of the vertical assessment of a femoral component	49
21	Illustration of the horizontal assessment of a femoral component	50
22	Image from a patient who had a cemented total hip arthroplasty. This anteroposterior radiograph shows a <2 mm-thick normal periprosthetic lucency	50
23	Image from a patient who had a cemented total hip arthroplasty. The lucency around the femoral stem is demarcated by a sclerotic line that measures <2 mm thick	51
24	anteroposterior radiograph shows spot welds that indicate bone ingrowth	52
25	Image from an asymptomatic patient who had bone resorption under the femoral flange	52
26	Image from a patient who had a cemented total hip arthroplasty and stress shielding	53
27	Image of pedestal formation from a patient who had a cementless total hip arthroplasty	54
28	anteroposterior radiograph shows the cement restrictor or centralizer	54
29	This frog-leg radiograph shows cables at the site of a trochanteric osteotomy	55
30	Laterally located linear lucency of extended trochanteric osteotomy should not be confused with fracture	56
31	Staphylococcus aureus infection of the prosthesis in a 54-year-old woman	63
32	Streptococcal infection of the prosthesis in a 43- year-old man 6 months after hip replacement	64
33	Staphylococcus aureus infection of the prosthesis in a 66-year-old man	64
34	Foreign-body reaction to polyethylene debris in a 66-year-old man	65
35	Sinus tract seen extending down to the THA prosthetic articulation and peripherally into the subcutaneous soft tissues	67
36	MRI of periprosthetic abscess	67

37	Trochanteric bursitis	68
38	62-year-old patient with an infected right hip arthroplasty	68
39	Us Image from a patient who had a normal total hip arthroplasty	70
40	Us Image from a patient who had a total hip arthroplasty with subsequent infection	71
41	Us Image from a patient who had total hip arthroplasty with subsequent infection of the endoprosthesis	71
42	Bone scan showing diffuse uptake around the femoral prosthesis	73
43	Combined Tc99m-MDP bone scan and gallium-67 scan	74
44	Increased FDG uptake at the bone-prosthesis interface surrounding the femoral stem	75
45	The seven femoral and three acetabular zones as described by Gruen and Delee	78
46	Acetabular component loosening	79
47	Femoral component loosening	80
48	Radiograph shows subtle zone of radiolucent bone around medial aspect of femoral component	81
49	Loose uncemented femoral component	81
50	Radiograph shows multiple small metallic densities projected over joint	82
51	Granuloma formation	83
52	Marked loosening in 74-year-old man	84
53	Arthrogram shows free flow of contrast agent into radiolucent area between prosthesis and bone	84
54	Revision total hip replacement	85
55	DXA images of the hemipelvis showing the scan acquisition area and layout ROIs for pelvic analyses	87
56	DXA image of the proximal femur showing the scan acquisition area and the layout of the seven Gruen ROI	87
57	Periacetabular osteolysis Coronal MR image of a hip arthroplasty	88
58	Sagittal MR image of an 84-year-old patient with both periacetabular and femoral osteolysis	89

59	Anterior and posterior images of a Tc99m-	91
	MDP bone scan in two separate patients	
60	sagittal T1-weighted spin-echo images +ve fan sign	95
61	coronal T2-weighted MR images obtained in	96
	asymptomatic and symptomatic patients after THA	
62	osseous detachment of the gluteus minimus tendon	96
63	bursal fluid collection partially filled with debris	97
64	fatty atrophy in the anterior aspect of the gluteus minimus muscle	97
65,66 67	76-year-old woman with clinical abductor failure	98
68	Coronal STIR MRI demonstrating oedema within gluteus maximus extending down to the greater trochanteric insertion	99
69	Coronal T1W MRI of the left hip demonstrating a soft-tissue abnormality	100
70	classification of heterotopic ossification by Brooker et al	101
71	anteroposterior radiograph shows an ill-defined and nonbridging early heterotopic ossification	102
72	anteroposterior radiograph shows a well-defined, late heterotopic ossification with continuous cortical bone	102
73	Coronal MR image of a 70-year-old man with heterotopic ossification	103
74	Defective anteversion	106
75	Screw fixation of the cup leading to psoas impingement	106
76	CT slices several centimeters above the acetabulum	107
77	Anterior cup overhang	107
78	Radiograph shows subtle prosthetic dislocation in 79-year-old woman	109
79	Acetabular component dissociation in 82-year-old man	109
80	Anteroposterior view of the pelvis clearly demonstrates the dislodgement and dislocation of the acetabular component	110

81	Coronal reformatted CT image demonstrates the	111
	dislocated prosthesis	
82	Axial CT image viewed with soft tissue windows	111
	demonstrates the dissociated acetabular	
	component	
83	Axial CT scan demonstrates the dislocated	112
	prosthesis in addition to fractures through the	
	quadrilateral plate and anterior wall	
84	Axial CT image demonstrates an additional	112
	fracture through the posterior wall	
85	Axial MR image of an 84-year-old patient with	113
	recurrent posterior left hip dislocation	
86	Anteroposterior pelvic radiograph shows an area	114
	of cortical thickening stress riser	
87	Pathologic fracture in 72-year-old woman after	115
	fall	
88	Component fracture	115
89	Sagittal reformatted CT through the right hip	116
	demonstrating a stress fracture	
90	fracture of the medial calcar	117
91	Radiograph shows histiocytic reaction in right hip	118
	of 47-year-old woman	
92	Drawing shows histiocytic reaction	119
93,94,	Histiocytic reaction simulating aggressive lesion	119
95	in 54-year-old man	120
96	Radiograph showing measurement of leg length	122
97	Metallosis	124
98	Axial CT through a THR showing	125
	lymphadenopathy	
99	Coronal MR image of a 40-year-old patient with	126
	immediate postoperative sciatic nerve dysfunction	
100	80-year-old woman with pain and swelling of hip	128
101	39-year-old woman with a pseudo tumor in the	130
	bladder as a complication of total hip replacement	
		1

Introduction

Hip replacement surgery is one of the most important surgical advances of the last century, In addition to marked reduction in pain and improvement in sleep, most people regain range of motion, physical ability, and quality of life. (Simic 2005)

The earliest recorded attempts at hip replacement (Gluck T, 1891), which were carried out in Germany, used ivory to replace the femoral head (the ball on the femur) (Gomez et al 2005). The first total hip replacement is thought to have been done in London by Phillip Wiles in 1938. The procedure was further developed in the 1950s by pioneers such as McKee and Farrar. (Petty 1991)

Since its establishment in 1960, THR has become one of the most widely performed procedures in orthopedics, It is estimated that approximately 1-3% of the older adult population (those 65 years and older) will undergo THA at some point, with the average age being 66 (Wilcock 1978), In 2002, more than 200 000 THA procedures were performed in the US (Rockville 2004), Now with an average cost of \$45,000. (Barnaby 2008)

Unfortunately, as any operation, total hip replacement has complications which include heterotopic bone formation, mechanical aseptic loosening, prosthetic or periprosthetic fracture, dislocation, superficial and deep infections, and foreign-body granulomatosis (ie, osteolysis). Such complications are a common source of patient morbidity and may necessitate revision arthroplastic surgery. (Pfirrmann et al 2005)

Recognizing and diagnosing these complications are often challenging because the presentation and findings are often nonspecific and frequently subtle. Radiography remains the cornerstone of evaluation and is complemented by arthrography, radionuclide scanning, sonography, CT, and MR imaging. (Keogh et al 2003)

The appropriate examination of a symptomatic patient who has undergone THA includes diagnostic imaging evaluation. This can involve radiography (Manaster et al 1996), nuclear medicine studies with bone and gallium scanning (Kraemer et al 1993), joint aspiration (Roberts et al 1992), and arthrography. (Cheung et al 1997)

The two-dimensional nature of radiographs limits their ability to accurately determine component alignment, such as the true version of the acetabular component in a total hip arthroplasty. CT has been proven to be more reliable than radiographic analysis, as well as intraoperative estimation of component alignment, providing a direct three-dimensional evaluation of cup version in total hip arthroplasty. (Wines et al 2006)

Several investigations of FDG PET for the evaluation of suspected infection have had promising results. (Zhuang et al 2001)

MR imaging has been shown to be a valuable diagnostic tool in patients who have undergone total hip replacement especially in assessment of abductor tendons and muscles. (White et al 2000)

Studies have shown that sonography is useful in the detection of periprosthetic infection characterized by a significant increase in periprosthetic fluid and by extracapsular fluid collections. (Foldes et al 1992)

AIM OF THE WORK

The aim of this study is the assessment of the role of different radiological and imaging modalities in the evaluation of complications after total hip replacement.

Anatomy of hip joint

Articulation

The hip joint is a synovial joint formed by the articulation of the rounded head of the femur and the cup-like acetabulum of the pelvis. It forms the primary connection between the bones of the lower limb and the axial skeleton of the trunk and pelvis. Both joint surfaces are covered with a strong but lubricated layer called articular hyaline cartilage. The cuplike acetabulum forms at the union of three pelvic bones — the ilium, pubis, and ischium (Faller et al 2004)

The Y-shaped growth plate that separates them, the triradiate cartilage, is fused definitively at ages 14-16 (Thieme Atlas of Anatomy 2006)

It is a special type of spheroidal or ball and socket joint where the roughly spherical femoral head is largely contained within the acetabulum and has an average radius of curvature of 2.5cm (Thieme Atlas of Anatomy 2006)

The acetabulum grasps almost half the femoral ball, a grip augmented by a ring-shaped fibrocartilaginous lip, the acetabular labrum, which extends the joint beyond the equator (Faller et al 2004)

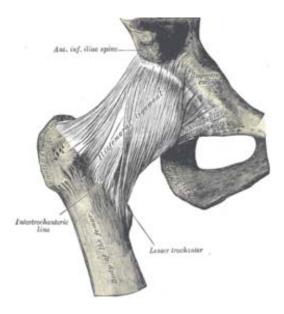


Fig (1) Right hip-joint from the front showing iliofemoral ligament and pubofemoral ligament . (Grey's anatomy 2000) $\,$

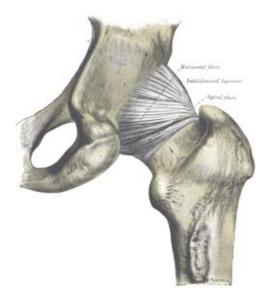


Fig (2) The hip-joint from behind showing ischiofemoral ligament (Grey's anatomy 2000)