DETERMINATION OF ACCURACY AND RELIABILITY OF A NEW RECORD TRANSFER SYSTEM

Thesis submitted to

The Faculty of Oral and Dental Medicine, Cairo University.

In partial fulfilment of the requirements for the

Doctors Degree in Fixed Prosthodontics.

By

Lamia Nabil Sherif Samaha

Assistant Lecturer of Fixed Prosthodontics,

Department of Fixed Prosthodontics,

Faculty of Oral and Dental Medicine, Cairo University.

Supervisors:

Prof. Dr. Ihab El Sayed Mosleh

Professor of Fixed Prosthodontics,

Department of Fixed Prosthodontics,

Faculty of Oral and Dental Medicine, Cairo University.

Prof. Dr. Amal Fathy Kaddah

Professor of Prosthodontics,

Department of Removable Prostheses,

Faculty of Oral and Dental Medicine, Cairo University.

ACKNOWLEGEMENT

I would like to express my thanks and gratitude to *Prof. Dr. Ihab Mosleh* for his constant guidance and support.

Deep thanks to *Prof. Dr. Amal F. Kaddah* for her constant encouragement, help and guidance.

I would like to thank *Prof. Dr. Niedermeier* and the whole department of Prosthodontics including technicians and helpers, Faculty of Oral and Dental Medicine (ZMK) University of Cologne, for their help and cooperation during the practical procedures of this study.

Special thanks to *Eng. W. Lang*, technical support at KaVo, GMbh, for the technical supply and support throughout the study.

Special thanks are due to the *Students of the final semesters* summer 2002 and winter 2002/03, Faculty of Oral and Dental Medicine (ZMK) University of Cologne, for volunteering to this work.

Also my sincere thanks *Fr. Aziza Hamdy* Egypt and *Fr. Margret Leopold*-Germany, representing the *DAAD* staff members for the scholarship, help, friendship and support throughout the scholarship procedures.

DEDICATION

To my Family

Mother and father, husband, kids and friends, who supported me with patience, and constant encouragement in every way possible. There are no words to express my gratitude.

To the soul of

my Father

I wish he were here.

INTRODUCTION.

Fixed prosthodontics is the branch of dentistry concerned with the replacement and/or restoration of teeth by artificial substitutes that are not readily removed from the mouth. This imposes the problem, that any existing discomfort or maladjustment of the restoration renders a constant influence on the stomatognathic system which in turn could lead to negative changes and dysfunction.

The occlusion of teeth is frequently overlooked or taken for granted in providing restorative dental treatment for patients. This may be partly due to the fact that the symptoms of occlusal disease are often hidden from the practitioner not trained to recognize them or to appreciate their significance. The long-term successful restoration of a mouth with cast metal or ceramic restorations is dependent upon the maintenance of occlusal harmony.

In order to produce restorations that need minimal chair side adjustment, fabricating an accurate tooth replacement requires accurate reproduction of the patient's mouth situation in the dental laboratory. This demands meticulous recording of the existing inter-maxillary relations and mandibular movements, and translating them to numerical values for articulator setting. Thus, a thorough understanding of the masticatory system and the used instrumentation as well as comprehension of the existing limitations is mandatory.

1

The mandibular movement is three dimensional; to be able to register and analyze the movement it was necessary to break it down into the three spatial planes.

Though the clinical significance was strongly debated, yet Pantography was long considered the gold standard registration method for accurate prosthetic constructions along the use of fully adjustable articulators.

The digitizing revolution of the 20th century has invaded all fields of our lives from the simplest house hold tools till the most sophisticated space industry. The dental profession profited a great deal from this especially in the field of restoration production where the **Computer Aided Design** and **Computer Aided Milling (CAD/CAM)** is taking more and more over. This led to modifying the clinical procedures to adapt to the computerized fabrication steps; some examples are digitized optical impressions, laser scanned models/dies, electronic jaw movement registration and virtual articulators.

The latest developments in restorative and prosthetic dentistry include the electronic registration. It records the patients exact mandibular movements in **six point freedom** and the recorded data can be either used in the classical table articulator as individualized readings or transferred to the computer to be used with other softwares such as virtual articulator or in CAD/CAM.

TABLE OF CONTENTS

INT	INTRODUCTION.			1
REV	REVIEW OF LITERATURE.			3
I.	Mandibular Kinematics.			3
II.	Th	ree-Dimensio	onal Movements (Basic Mandibular	5
	Movements).			
III.	The	e Articulator	•	12
IV.	Registration Methods And Techniques.			34
V.	The Electronic Registration (Types And Principles).			48
STATEMENT OF THE PROBLEM			59	
AIM OF THE STUDY.			61	
MAT	MATERIALS AND METHODS.			62
I.	Materials.			62
II.	Methods.			63
II.	A.	Standardization procedures.		
II.	В.	Phase I:	Accuracy and Reliability determination.	69
II.	В.	Phase II:	Ergonomic evaluation.	76
II.	В.	phase III:	Evaluation of clinical applicability of	77
			DIGMA.	
II.	C.	C. Data processing and evaluation.		
RESU	RESULTS.			86
I.	Phase One: Accuracy And Reliability.			86
I.	A.	Evaluating the Condylar angle (CA).		86

I.	В.	Evaluating the Bennett angle (Ben).		97
I.	C.	Evaluating the Immediate side shift (ISS).		
II.	Pha	Phase Two: Ergonomic Evaluation (Handability).		
II.	A.	Comparison between PRO and DIGMA.		110
II.	В.	Comparison between percentages changes between visits.		111
II.	C.	Changes between visits for each group.		111
III.	Pha	Phase Three: Clinical Applicability Of The Digma System.		
III.	Α.	Sp	lint evaluation.	112
III.	В.	Comparison between the two splints.		116
III.	C.	Comparing the articulator setting values.		117
DISC	DISCUSSION.			121
	Discussion Of Materials And Methods.			122
	Dis	Discussing The Results.		
I.	Pha	Phase One: Accuracy And Reliability.		
I.	Α.	Evaluating the Condylar Guidance (CA).		125
I.	В.	Evaluation of the Bennett angle (Ben).		129
I.	C.	Evaluating the immediate side shift (ISS).		131
II.	Phase Two: Ergonomic Evaluation (Handability).		132	
III.	Phase Three: Clinical Applicability Of The Digma System.			133
III.	Α.	Splint evaluation.		133
III.	Α.	1.	Subjective observations (Splint preference).	135
III.	Α.	2.	Objective observations.	136
III.	В.	Co	mparison between the two splints.	137

Contents...

III. C. Comparing the articulator setting values.	139	
SUMMARY AND CONCLUSIONS.		
RECOMMENDATIONS.		
REFERENCES		
APPENDIX		
ARABIC SUMMARY.		

LIST OF FIGURES

Figure 1:	The determinants of occlusion, posteriorly the TMJ	
	and partly the posterior teeth, anteriorly the teeth.	
Figure 2:	A. Transverse axis. B. Sagittal axis. C. Vertical axis.	5
Figure 3:	The articulated models with the overbite demarcation	
	line.	
Figure 4:	The specially fabricated adjunct	
Figure 5:	The stainless steel tube with nut positioned in place	66
Figure 6:	The silicon mould filled with the resin.	67
Figure 7:	The pressure pot.	67
Figure 8:	The Digma system.	69
Figure 9:	The Digma head-bow with the receiver sensor secured	70
	in place.	
Figure 10:	The Digma report with the articulator adjustment	71
	values.	, 4
Figure 11:	The Pro axiograph.	72
Figure 12:	The Pro face bow mounted on patient.	72
Figure 13:	The Protar 7 articulator with the cast mounting.	73
Figure 14:	The Protar articulator with the face bow mounted to	74
	individual hinge axis.	
Figure 15:	The lateral pointer on the mandibular face bow.	75
Figure 16:	The duplicating machine and the duplicated model in	77
	the duplicating box.	
Figure 17:	Upper model mounted in the articulator as split casts.	77

Figure 18:	The lower cast mounting.	78
Figure 19:	Marking the equator line on the surveyor.	78
Figure 20:	Up: the vacuum forming machine. Left: the cast placed	
	in position. Right: the cast covered with the vacuum	79
	foil.	
Figure 21:	The cast with excess foil cut away.	80
Figure 22:	The foil after exposing to Roccatec.	80
Figure 23:	The casts with the acrylic splint held in-between and	
	the articulator members held t with tight elastics to	81
	keep the incisal pin touching till the resin sets.	
Figure 24:	Occlusal adjustment of the splint.	81
Figure 25:	Example of splint with final articulation adjustments as	82
	given from the laboratory to the operator.	
Figure 26:	Left: Checking the occlusal splint for balance. Right:	82
	the splint with the existing contacts intraorally.	02
Figure 27:	Left: the table setup for splint working procedures.	83
	Right: occlusal adjustment of the splint.	
Figure 28:	The centric and eccentric contacts on splint before	84
	adjustments.	UT

LIST OF GRAPHS

Graph 1:	Mean values of all gathered Digma data of condylar angles.	87
Graph 2:	Digma mean differences for all readings in all visits.	88
Graph 3:	Condylar angle Digma, three readings, three visits in relation to mean all visits.	89
Graph 4:	Digma differences between each reading each visits.	90
Graph 5:	Condylar angle Digma differences between visits.	91
Graph 6:	Frequencies Pro all Condylar angles.	92
Graph 7:	Means of differences of visits, for CA.	92
Graph 8:	Digma condylar angle three visits. Green= right, red= left.	93
Graph 9:	Pro mean differences of visits Condylar angle.	94
Graph 10:	Condylar angle mean differences of all reading comparing Digma (D) and Pro (P) in relation to no change (0).	95
Graph 11:	Condylar angle differences comparing the three visits for Digma and Pro regarding no change (0).	96
Graph 12:	Mean values of all gathered Digma data of Bennett angles (Ben) Right and Left.	97
Graph 13:	Means of differences of all Digma Bennett angle data.	98
Graph 14:	Graphic representation of all Digma Bennett angle.	99
Graph 15:	Digma differences between Bennett angles each reading each visit.	100

Graph 16:	Mean all Bennett angle Pro.	101
Graph 17:	Pro Bennett angle all data differences.	102
Graph 18:	Pro Bennett angle three readings at three visits.	103
Graph 19:	Bennett angle Pro differences between each reading.	104
Graph 20	Pro Bennett angle differences between visits.	104
Graph 21:	Bennett angle comparing the means of differences between Digma (D) and Pro (P).	106
Graph 22	Means of all ISS data gathered.	107
Graph 23:	Pro immediate side shift all three visits.	109
Graph 24:	Comparison between PRO and DIGMA time measured in relation to visit.	110
Graph 25:	Comparison between percentages changes between visits in the two systems.	111
Graph 26:	Changes between visits for Pro system.	112
Graph 27:	Changes between visits for Digma system.	112
Graph 28:	Splint preference.	114
Graph 29:	Splint need to remake.	114
Graph 30:	Splint need for adjustment.	115
Graph 31:	Patient preference according to fabrication.	115
Graph 32:	Occlusal contacts and number of adjustments according to sequence of wearing.	117
Graph 33:	Occlusal contact at the first visit prior to adjustment according to fabrication method.	117

REVIEW OF LITERATURE

In order to be able to fabricate an accurate dental restoration, there should be a thorough understanding and comprehension of the mandibular kinematics.

I. Mandibular Kinematics.

Kinematics is the study of patterns of motion with respect to time ^[24]. The kinematics study of the functional relationship between mandible and maxilla is extremely complex in nature. It is related to mechanical and neuromuscular principles. It commonly involves a combination of movements in the sagittal, frontal and horizontal planes. These complex movements are varying greatly among individuals and within the same individual during all functional or non-functional positions ^[62].

The two joints work synchronically for the jaw to move. The movement is initiated by the neuromuscular system and is controlled by the shape of the bones and function of muscles and ligaments. The upper and lower teeth articulate together to form a rigid stop of motion [18, 93, 108]. The measurement and reproduction of those condylar movements is the basis for the use of articulators.

Thus the determinants of the mandibular movements are posteriorly the right and left temporomandibular joints through the unchangeable condylar path, anteriorly the teeth of the maxillary and mandibular arches, and overall the neuromuscular system ^[113] [Figure 1].

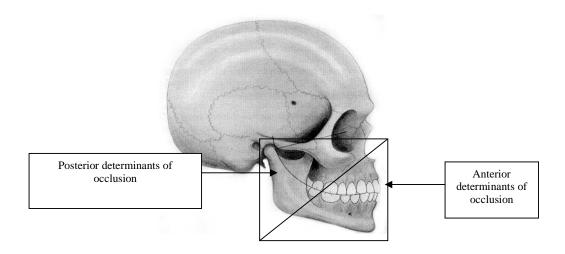


Figure 1: the determinants of occlusion, posteriorly the TMJ and partly the posterior teeth, anteriorly the teeth. *

The dentist must relate an understanding of the mandibular movements to their useful clinical application in the treatment of patients, in order to select and adjust recording devices and articulators for restoration construction [18, 62].

The anterior determinants, the teeth, provide guidance to the mandible in several ways. The posterior teeth provide the vertical stops for mandibular closure. They also guide the mandible into the position of maximum intercuspation, which may or may not coincide with the optimum position of the condyles in the glenoid fossae. The anterior teeth (canine to canine) help to guide the mandible in right and left lateral excursive movements and in protrusive movements. Dentists have indirect control over this determinant. Procedures done to the teeth may be reflected in the response of the neuromuscular system. Deflective occlusal contacts or steep incisal guidance from opposing canines can change the pathway of mandibular movements [62].

_

^{*} Ahlers M. O.: simulation of occlusion in restorative dentistry: the Artex system. Dental concept Verlag GmbH, Hamburg, Germany. 2000.