Effect Of Statins On Pulmonary Functions in COPD Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Chest Diseases and Tuberculosis

By Yasmin Fahd Salah El Din M.B.B.Ch

Supervised by

Prof. Mohammed Sherif Elbouhy

Professor of Chest Diseases

Faculty of Medicine, Ain Shams University

Dr. Eman Ramzy Ali

Lecturer of Chest Diseases

Faculty of Medicine, Ain Shams University

Dr. Ashraf Adel Gomaa Lecturer of Chest Diseases Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First of all, I thank **ALLAH** who gave me the power to finish this work.

I would like to express my deepest gratitude and greatest appreciation to **Prof. Dr.**Mohammed Sherif Elbouhy, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for his guidance, supervision and support.

My deepest thanks & infinite gratitude to **Dr. Eman Ramzy Ali**, Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University, for her guidance, cooporation and patience.

I would like to extend cordial appreciation & infinite gratitude to **Dr. Ashraf Adel Gomaa**, Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University who was very kind and patient to me, saving no time or effort helping me with this work.

Also, I would like to express special thanks and gratitude to **Epico Company for drug industry** which supplied this study with the materials needed to finish this work.

List of Contents

	Page
Introduction	1
Aim of the Work	3
Review of Literature:	
Chronic Obstructive Pulmonary Disease (COP)	D)4
■ Definitions	4
■ Burden of COPD	5
Risk Factors	10
 Pathogenesis, Pathology Pathophysiology 	and 17
Clinical Features of COPD	32
Investigations	37
• Staging of COPD	44
■ Management of COPD	47
Statins	61
• History	61
• Chemistry	62
• Members	63
 Mechanism of action 	65

 Statins and inflammation 	66
Absorption, fate and excretion	. 67
• Adverse effects	. 69
 Indications and uses 	. 71
 Statin effects on pulmonary inflammation 	
in COPD	. 73
Subjects and Methods	77
Results	85
Discussion	98
Summary 1	.05
Conclusions 1	.08
Recommendations	.09
References 1	.10
Arabic Summary	

List of Figures

Figure No.	Title	Page No.
(1)	Pathological Changes of the Central Airways in COPD	20
(2)	Pathological Changes of the Peripheral Airways in COPD	21
(3)	Normal spirogram and spirogram typical of patients with moderate COPD	40
(4)	Members of Statins	63,64
(5)	Comparison between all PFT parameter before and after treatment with Atorvastatin among all participants	89
(6)	Comparison between all PFT parameter before and after treatment with Atorvastatin among mild COPD cases	90
(7)	Comparison between all PFT parameter before and after treatment with Atorvastatin among moderate COPD cases	91

(8)	Comparison between all PFT parameter before and after treatment with Atorvastatin among severe COPD cases	92
(9)	Comparison between mild, moderate and severe COPD regarding the change in PFT parameter before and after treatment with Atorvastatin	93
(10)	Correlations between FEV1 and other PFT parameters after Treatment with Atorvastatin	94
(11)	Correlations between FVC and other PFT parameters after Treatment with Atorvastatin	95
(12)	Correlations between FEV1/FVC and other PFT parameters after Treatment with Atorvastatin	96
(13)	Correlations between FEF25-75 and other PFT parameters after Treatment with Atorvastatin	97

List of Tables

Table No.	Title	Page No.
(1)	The Egyptian Society of Chest Diseases and Tuberculosis (ESCT) classification of COPD (2003)	45
(2)	Global initiative for Chronic Obstructive Lung Disease, 2009 classification	46
(3)	Stepwise therapy at Each Stage of COPD according to GOLD 2009	50
(4)	Description of FEV1, FVC, FEF25-75 and FEV1/FVC before and after the treatment with Atorvastatin among all study participants	85
(5)	Description of FEV1, FVC, FEF25-75 and FEV1/FVC before and after the treatment with Atorvastatin among mild COPD patients	86
(6)	Description of FEV1, FVC, FEF25-75 and FEV1/FVC before and after the treatment with Atorvastatin among moderate COPD patients	87

(7)	Description of FEV1, FVC, FEF25-75 and FEV1/FVC before and after the treatment with Atorvastatin among severe COPD patients	88
(8)	Comparison between all PFT parameter before and after treatment with Atorvastatin among all participants	89
(9)	Comparison between all PFT parameter before and after treatment with Atorvastatin among mild COPD cases	90
(10)	Comparison between all PFT parameter before and after treatment with Atorvastatin among moderate COPD cases	91
(11)	Comparison between all PFT parameter before and after treatment with Atorvastatin among severe COPD cases	92
(12)	Comparison between mild, moderate and severe COPD regarding the change in PFT parameter before and after treatment with Atorvastatin	93

(13)	Correlations between FEV1 and other PFT parameters after Treatment with Atorvastatin	94
(14)	Correlations between FVC and other PFT parameters after Treatment with Atorvastatin	95
(15)	Correlations between FEV1/FVC and other PFT parameters after Treatment with Atorvastatin	96
(16)	Correlations between FEF25-75 and other PFT parameters after Treatment with Atorvastatin	97

List of Abbreviation

ASTEROID A clinical trial published in 2006 that shows

trail the effects of statins on atherosclerosis

BEC Bronchial Epithelial Cells

BODE body mass index, airflow obstruction, dyspnea,

and exercise capacity

BTS British Thoracic Society

CAL Chronic Airflow Limitation

CD4,CD8 Claster of Differentiation (is a glycoprotein

expressed on the surface of T helper cells, regulatory T cells, monocytes and

macrophages).

CHD Coronary Heart Disease

COPD Chronic Obstructive Pulmonary Disease

CRP C-reactive protein

CT Computed tomography

CXP3A4 3A4 isoform of cytochrome P450

Cyclic AMP Cyclic Adenosine monophosphatase

DALY The Disability-Adjusted Life Year

ESCT The Egyptian Society of Chest Diseases and

Tuberculosis

ETS Environmental Tobacco Smoke

FDA Food and Drug Administration

FEF₂₅₋₇₅ Forced expiratory flow 25% to 75%.

 FEV_1 Forced expiratory volume in first second.

FVC Forced vital capacity

GM-CSF Granulocyte-macrophage Colony Stimulating

Factor

GTPase Enzyme bind and hydrolyze guanosine

triphosphate

GOLD Global Initiative for Chronic Obstructive Lung

Disease

H. influenza Hemophilus influenza

HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A

reductase reductase

HPS Heart Protection Study

ICU Intensive Care Unit

IL-1,6,8 Interleukin-1,6,8

KCO transfer coefficient

KPa Kilopascal (a unit of pressure measurement)

LDL low density lipoprotein

LTB4 leukotriene B4

LVRS Lung Volume Reduction Surgery

M₂ receptor Muscarinic receptor

MENA Middle East and North Africa region

M. catarrhalis Moraxella catarrhalis

mEPHX1 microsomal epoxide hydrolase 1

NHANES III The third National Health And Nutrition

Examination Survey

NIPPV Noninvasive intermittent positive pressure

ventilation

PaO₂ Partial pressure of oxygen

PaCO₂ Partial pressure of carbon dioxide

PH Pulmonary Hypertention

Pemax Maximum expiratory pressure

PFT Pulmonary Function Tests

Pimax Maximum inspiratory pressure

S.pneumoniae streptococcus pneumoniae

SaO₂ Oxygen saturation

SREBPs Sterol Regulatory Element Binding Proteins

TLCO Carbon monoxide Transfer Factor

TGF-1 Transforming Growth Factor beta 1

TNF-α Tumor Necrosis Factor alpha

μ**g** Microgram

V_A/Q Ventilation/ Perfusion ratio

WHO World Health Organization

YLD Years of Living with Disability

Introduction

Chronic Obstructive Pulmonary Disease (COPD) treatable preventable and disease is state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious particles or gases. Worldwide cigarette smoking is the overwhelming risk factor for COPD, although in many countries, air pollution resulting from the burning of wood and other biomass fuels has also been identified as a COPD risk factor *(GOLD, 2009).*

Although COPD affects the lungs, it also produces significant extrapulmonary effects that may contribute to disease severity in individual patients (Agusti, 2005).

A diagnosis of COPD should be considered in any patient who has symptoms of cough, sputum production, or dyspnea, and/or a history of exposure to risk factors for the disease *(GOLD, 2009)*.

Statins"3-hydroxy-3-methyl-glutaryl-coenzyme-A (HMG- CoA) reductase inhibitors", are a class of drugs that lower cholesterol level in people with or at risk of

cardiovascular diseases. They lower cholesterol by inhibiting the enzyme HMG-CoA reductase which is the rate-limiting enzyme of mevalonate pathway of cholesterol synthesis (*Endo, 1992*).

Statins are used for their lipid lowering characteristics but also appear to have anti-inflammatory and immunomodulatory properties which could possibly influence inflammatory airway disease (Keddissi et al., 2007).

Previous studies assessed evidence for disease modifying effects of statin treatment in patients with COPD. Outcomes associated with treatment with statins included decreased COPD related mortality, reduction in incidence of respiratory related urgent care, fewer COPD exacerbations, fewer intubations for COPD exacerbations and attenuated decline in pulmonary function (*Dobler et al., 2009*).

Aim of the Work

The aim of this work is to assess the effect of statins on pulmonary functions in COPD patients.