EFFICIENCY OF SOME NATURAL FEED ADDITIVES AS GROWTH PROMOTERS FOR BROILER CHICKENS

By

AMANY HUSSIEN WALY ABD EL-RASOUL

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1999 M.Sc. Agric. Sc. (Poultry Nutrition), Ain Shams University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Poultry Nutrition)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFICIENCY OF SOME NATURAL FEED ADDITIVES AS GROWTH PROMOTERS FOR BROILER CHICKENS

By

AMANY HUSSIEN WALY ABD EL-RASOUL

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1999 M.Sc. Agric. Sc. (Poultry Nutrition), Ain Shams University, 2004

This thesis for Ph.D. degree has been approved by: Prof. Dr. Yousef Abd El-Wahab Attia		
	Branch), Alexanderia University.	
Prof. Dr.	Nabil Mohamed Hassan El-Medany	
	Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams	
	University	
Prof. Dr.	Alaa El-Din Abd El-Salam Hemid	
	Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams	
	University	
Prof. Dr.	Ibrahim El-Wardany El-Sayed	
	Prof. Emeritus of Poultry Physiology, Faculty of Agriculture,	
	Ain Shams University	

Date of Examination: 4/10/2010

EFFICIENCY OF SOME NATURAL FEED ADDITIVES AS GROWTH PROMOTERS FOR BROILER CHICKENS

By

AMANY HUSSIEN WALY ABD EL-RASOUL

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1999 M.Sc. Agric. Sc. (Poultry Nutrition), Ain Shams University, 2004

Under the supervision of:

Prof. Dr. Ibrahim El-Wardany El-Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Alaa El-Din Abd El-Salam Hemid

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Prof. Dr. Ahmed Hussien Abd El-Meged

Head of Research of Poultry Nutrition, Department of Poultry Nutrition, Animal Production Research Institute, Agriculture Research Center

ABSTRACT

Amany Hussien Waly: Efficiency of Some Natural Feed Additives as Growth Promoters for Broiler Chickens. Unpublished Ph.D. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2010.

This experiment was conducted to evaluate the effect of using leaves of artichoke and chicory plants as growth promoters. A total number of 390 unsexed 7 day old broiler chicks were used to evaluate the effect of using leaves of artichoke and chicory plants during the 7-21, 22-35 or 1-35d periods in comparison to control diet. The experimental diets were divided into 13 groups, the first group was control and the other 12 groups were treatments. Birds received basal diets containing 0/0, 0.5/0, 0.5/0.5, 0.5/1, 1/0, 1/0.5 and 1/1% (starter/finisher diet) artichoke, or 0/0, 0.5/0, 0.5/0.5, 0.5/1, 1/0, 1/0.5 and 1/1% (starter/finisher diet) chicory. All diets were formulated using linear programming to be isonitrogenous and isocaloric. Diets and water were provided *ad-lipitum* during the experimental period.

Artichoke leaves significantly improved live body weight and body weight gain. Feed consumption was significantly affected by using artichoke leaves as feed additives. Feed conversion ratio during the entire experiment period was significantly improved by using artichoke leaves. There were significant effects on digestibility coefficient of CP, EE and CF due to supplementation with artichoke. Total edible parts were significantly increased, while, abdominal fat percentage was significantly decreased. Blood plasma total lipids and cholesterol were significantly decreased. However, plasma triglycerides level was not affected. Moreover, using the globe artichoke as feed additives was shown to increase thyroid hormones, stimulate the immune responses and improved sensory evaluation.

Live body weight and body weight gain were significantly increased by using chicory as feed additives, while, feed consumption was not significantly affected, with a significant effect of treatment on digestibility coefficient of DM, CP and CF. Carcass percentage and total edible parts were significantly increased, while, abdominal fat was significantly decreased.

It is concluded that leaves of artichoke and/or chicory plants can be used as feed additives for improving growth performance, carcass characteristics and immune responses.

Key Words:

poultry nutrition, feed additives, the globe artichoke, chicory, growth performance, carcass characteristics, immune responses

ACKNOWLEDGEMENTS

First of all, thanks to the most generous Allah who helps me to finish this study.

Special thanks and sincere gratitude to Prof. Dr. Iberahim El-Wardany El-Sayed, Prof. emeritus of Poultry Physiology, Faculty of Agriculture, Ain Shams University, for his keen supervision, continuous support, faithful helps and advise throughout the course of this study.

Also, special thanks and sincere gratitude to Prof. Dr. Alaa El-Din Abd El-Salam Hemid, Prof. of Poultry Nutrition, Faculty of Agriculture, Ain Shams University, for his keen supervision, continuous support, faithful helps and advise throughout the course of this study.

I would like to express my deepest gratitude to Prof. Dr. Ahmed Hussien Abd El-Meged, Head of Research of Poultry Nutrition, Animal Production Research Institute, for his faithful help and advise throughout the course of this study, for his support during the practical work and facilities offered to complete this work.

Also, deeply gratitude to Poultry Nutrition Department, Animal Production Research Institute for generous facilities offered during the practical course.

My deepest thanks to the staff members of the Poultry Production Department, Faculty of Agriculture, Ain Shams University, for generous facilities offered during the practical course.

Last but not least my deepest gratitude for my family for their continuous support and faithful help.

CONTENTS

	<u>Page</u>
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2. 1. The globe artichoke	3
2.1.1 Plant description	3
2.1.2. Chemical Composition	5
2.1.3. Pharmaceutical Effects	7
2.1.4. Performance Effect	12
2.2. Chicory	14
2.2.1. Plant Description	14
2.2.2. Chemical Composition	15
2.2.3. Pharmaceutical Effects	18
2.2.4. Performance Effect	27
3. MATERIALS AND METHODS	30
3.1. Experimental Design	30
3.2. Experimental Birds and Management	31
3.3. Preparing of Feed additives	31
3.4. Experimental diets	31
3.5. Growth Performance	34
3.5.1. Average Live Body Weight (LBW)	34
3.5.2. Body Weight Gain (BWG)	34
3.5.3. Feed Consumption	34
3.5.4. Feed Conversion Ratio	34
3.5.5. Mortality Rate	34
3.6. Digestibility Trails	35
3.7. Chemical Analysis	35
3.8. Slaughter Trails	35
3.9. Blood Plasma Analysis	35

3.10. Immunity Measurement	36
3.11. Sensory Evaluation (panel test)	36
3.12. Economic Evaluation	37
3.13. Statistical Analysis	37
4. RESULTS AND DISCUSSION	38
4.1. Artichoke leaves (by-product)	38
4.1.1. Approximate analysis	38
4.1.2. Effect of Artichoke on Growth performance	38
4.1.2.1. Live Body Weight (LBW)	38
4.1.2.2. Body Weight Gain (BWG)	39
4.1.2.3. Feed Consumption	41
4.1.2.4. Feed Conversion Ratio	41
4.1.3. Digestibility traits	43
4.1.4. Slaughter trails	45
4.1.5. Blood Plasma Analysis	48
4.1.5.1. Total protein, Albumin, Globulin and A/G Ratio	48
4.1.5.2. Total Lipid, Cholesterol and Triglycerides	٤٩
4.1.5.3. ALT, AST and Creatinine	51
4.1.5.4. Thyroids hormones	51
4.1.6. Immunity measurement (Antibody Production Abs)	51
4.1.7. Lymphatic Organs	53
4.1.8. Sensory evaluation (panel test)	55
4.1.9. Economic evaluation	55
4.2. Chicory plants	57
4.2.1. Approximate Analysis	57
4.2.2. Effect of Chicory on Growth performance	57
4.2.2.1. Live Body Weight (LBW)	57
4.2.2.2. Body Weight Gain (BWG)	58
4.2.2.3. Feed Consumption	59
4.2.2.4. Feed Conversion Ratio	60
4.2.3. Digestibility traits	62
4.2.4. Slaughter trails	63

4.2.5. Blood Plasma Analysis	66
4.2.5.1. Total protein, Albumin, Globulin and A/G Ratio	66
4.2.5.2. Total Lipids, Cholesterol and Triglycerides	66
4.2.5.3. ALT, AST and Creatinine	67
4.2.5.4. Thyroids hormones	70
4.2.6. Immunity measurement (Antibody Production Abs)	70
4.2.7. Lymphatic Organs	72
4.2.8. Sensory evaluation (panel test)	72
4.2.9. Economic evaluation	74
5. SUMMARY AND CONCLUSION	76
6. REFERNCES	80
7. ARABIC SUMMARY	

LIST OF TABLES

Tal	bles	Pag
1	Composition and chemical analysis of basal diets	32
2	The panel test values.	37
3	Chemical analysis of Artichoke leaves (by-product)	48
4	Effect of using Artichoke leaves as feed additives on	40
	LBW and BWG.	
5	Effect of using artichoke leaves as feed additives on feed	42
	consumption and feed conversion ratio.	
6	Effect of using artichoke leaves as feed additives on	44
	digestibility coefficients	
7	Effect of using artichoke leaves as feed additives on	46
	carcass characteristic of broiler chicks.	
8	Effect of using artichoke leaves as feed additive on blood	50
	plasma total protein, albumin, globulin and A/G Ratio.	
9	Effect of using artichoke leaves as feed additive on blood	50
	plasma total lipids, cholesterol and triglycerides.	
10	Effect of using artichoke leaves as feed additive on blood	52
	plasma ALT, AST and creatinine.	
11	Effect of using artichoke leaves as feed additive on	52
	thyroids hormones.	
12	Effect of using artichoke leaves as feed additives on	54
	immunity measurement.	
13	Effect of using artichoke leaves as feed additives on the	54
	relative weight of some lymphatic organs.	
14	Effect of using artichoke as feed additives on sensory	56
	values of carcass.	
15	Economical efficiency and performance index of broiler	56
	fed on the experimental diets.	
16	Chemical analysis of chicory plants.	57
17	Effect of using chicory plants as feed additives on LBW	09
	and BWG	

18	Effect of using chicory plants as feed additives on feed	61
	consumption and feed conversion ratio.	
19	Effect of using chicory plants as feed additives on	63
	digestibility coefficients.	
20	Effect of using chicory plants as feed additive on carcass	70
	characteristics of broiler chicks	
21	Effect of using chicory plants as feed additive on blood	67
	plasma total protein, albumin, globulin and A/G Ratio.	
22	Effect of using chicory plants as feed additive on blood	77
	plasma total lipids, cholesterol and triglycerides.	
23	Effect of using chicory plants as feed additive on blood	79
	plasma ALT, AST and creatinine.	
24	Effect of using chicory plants as feed additive on thyroids	Y1
	hormones.	
25	Effect of using chicory plants as feed additives on	Y1
	immunity measurement	
26	Effect of using chicory plants as feed additives on the	٧٣
	relative weight of some lymphatic organs.	
27	Effect of using chicory plants as feed additives on sensory	٧٣
	values of carcass	
28	Economical efficiency and performance index of broiler	٧٥
	fed on the experimental diets.	

LIST OF FIGURES

Fig	gures	Page
1	The globe artichoke.	3
2	Chicory plants	14
3	The percentage of feed additives in the experimental diets.	30
4	The effect of using artichoke leaves as feed additives on	42
	feed conversion ratio.	
5	Effect of using artichoke leaves as feed additives on the	48
	percentages of abdominal fat in broiler chicks.	
6	Effect of using artichoke leaves as feed additives on	50
	plasma total lipids in broiler chicks	
7	Effect of using artichoke leaves as feed additives on	52
	plasma cholesterol in broiler chicks	
8	Effect of using artichoke leaves as feed additives on	54
	immunity measurement	
9	Effect of using artichoke leaves as feed additives on the	56
	relative weights of some lymphatic organs.	
10	The effect of using chicory plants as feed additives on feed	62
	conversion ratio.	
11	Effect of using chicory plants as feed additives on the	65
	percentages of abdominal fat in broiler chicks.	
12	Effect of using chicory plants as feed additives on plasma	67
	total lipids in broiler chicks	
13	Effect of using chicory plants as feed additives on plasma	69
	cholesterol in broiler chicks.	
14	Effect of using chicory plants as feed additives on plasma	69
	triglycerides in broiler chicks.	
15	Effect of using chicory plants as feed additives on	71
	immunity measurement	
16	Effect of using chicory plants as feed additives on the	73
	relative weight of some lymphatic organs.	

LIST OF ABBREVIATIONS

Abs antibodies

ALT alanine aminotransferase AST aspartate aminotransferase

BWG body weight gain

CF crude Fiber
CP crude protein
DM dry matter
EE ether extract

FOS fructooligosaccharides

g gram hr hour

g kilo gram

LBW live body weight

mg milligram

ME metabolize energy
NFE nitrogen free extract

ns non-significant.

OM organic matter

PI performance index

REE relative economic efficiency

Sig significant.
Tr treatment

 T_3 hormone triiodothyronine

T₄ hormone thyroxine

wk week

1. INTRODUCTION

Antibiotics are widely used as therapeutic, prophylactic and growth promoting agents in livestock and poultry production (**Peri**, *et al.*, **2009**).

In poultry, antibiotics usage had facilitated their efficient production, and also enhanced the health and wellbeing of poultry by reducing the incidence of diseases (Dan, 2003) either by killing or inhibit the growth of bacteria (Nita, 2007). Unfortunately, edible poultry tissues may be contaminated with harmful concentrations of drug residues (Shahid, et al., 2007). Besides, their indiscriminate use caused an increased bacterial resistance (Berchieri, et al., 1989). To overcome those problems there are several kinds of antibiotics-alternatives which developed and used currently. Among which readily memorable natural medicinal plants and herbs with their excellent physiological activity are getting attention by researchers (Hernandez, et al., 2001).

For examble, artichokes and chicory are believed to have several effect on liver, kidney and some endocrine glands activity in both avian and mamalian.

Recent research referred to an alternative approach to subtherapeutic antibiotics in poultry production by using agro-industry byproducts in poultry diets. Supplementing broiler diets with non-traditional feed additives may be an alternative way to improve nutrients utilization, promote growth performance and reduce hazard pollution resulting fron these waste products.

Artichoke refuse parts (stalks and leaves) and chicory plants are suggested by many authers as a good alternative for antibiotics because of their medicinal effects, inulin content, polyphenolic and fructooligosaccharide contents (Femenia, et al., 1998; Yusrizal and Chen 2003; Kleessen, et al., 2003 Brown, et al., 2005; Schutz, et al., 2004 and Abdo, et al., 2007)

A high content of oligosaccharides was observed in artichoke (Frutos, et al., 2008) and in chicory (Timmermans, et al., 2001 and Yusrizal and Chen, 2003)

Baurhoo, et al. (2007) mentioned that oligosaccharides (prebiotic) can be used as alternatives to antibiotic growth promoters in broilers. Moreover, the globe artichoke was reported to contain flavonoid which have hepatoprotective and antioxidant activity (Jellin, et al., 2002), a source of phenolic compounds which is natural antioxidants (Schutz, et al., 2004), cynarin which reduce cholesterol biosynthesis (Pittler, et al., 2005), and it is a good source of health-promoting polyphenols (Fratianni, et al., 2007). Also, Zhua, et al. (2005) discovered an antifungal, hypocholesterolemic and anticarcinogenic activities of the globe artichoke.

On the other hand, chicory plant was reported to relieve liver, spleen, kidney disorder and to enhance appetite and supports the body's ability to absorb calcium (**Kapes and Frey, 2005**). It contains also chicoric acid which have strong antioxidant activity (**Jayasinghe**, *et al.*, **2003**).

Chicory is known to possess hepatoprotective features (**Khan**, *et al.*, 2009), used for treatment icterus, renal failure, gout and arthritis in human without any side effects as reported by **Afrough**, *et al.* (2009).

Therefore, the present study was undertaken to evaluate the effect of using artichoke leaves, and/or chicory plant in broiler diets on the growth performance and immune response, carcass quality, some blood parameters and economic efficiency of these treatments.