SEED POTATO PRODUCTION USING MICROTUBER

By IBRAHIM HUSSEIN OSMAN AMER

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Agricultural Science
(Agricultural and Food Production in Arid Lands Biotechnology in Arid Lands)

Arid Land Agricultural Graduate Studies and Research Institute
Faculty of Agriculture
Ain Shams University

Approval Sheet

SEED POTATO PRODUCTION USING MICROTUBER

By IBRAHIM HUSSEIN OSMAN AMER

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2005

This the	sis for M.Sc. degree has been approved b	y:
Prof. Dr	. Ali Ibrahim Ali Hassan	•••••
	Prof. of Vegetable Crops, Faculty of Agric	culture,
	Alexandria University	
Prof. Dr	. Mohamad Emam Ragab	•••••
	Prof. of Vegetable Crops, Faculty of Agri	culture, Ain
	Shams University	
Prof. Dr	. Ahmed Mahmoud El-Gizawy	•••••
	Prof. Emeritus of Vegetable Crops, Facul	ty of Agriculture
	Ain Shams University	

Date of Examination: 19/6/2010

SEED POTATO PRODUCTION USING MICROTUBER

By IBRAHIM HUSSEIN OSMAN AMER

B.Sc.Agric.Sc. (Horticulture), Ain Shams University, 2005

Under the supervision of:

Prof. Dr. Ahmed Mahmoud El-Gizawy

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Ayman Farid Abou-Hadid

Prof. of Vegetable Crops, President of Agricultural Research Center, Ministry of Agriculture

Prof. Dr. Graziano Zocchi

Prof. of Plant Physiology and Biochemistry, Department of Plant Production, Faculty of Agriculture, Milan University, Italy

ABSTRACT

Ibrahim Hussein Osman Amer: Seed Potato Production Using Microtuber. Unpublished M.Sc. Thesis, Arid Land Agricultural Graduate Studies and Research Institute, Faculty of Agriculture, Ain Shams University, 2010.

This study was carried out at the tissue culture laboratory of Arid Land, Agriculture Research Unit, The Faculty of Agriculture, Ain Shams University, during the period from 2006-2009. The objective of this work was to study the effect of some factors affecting in vitro microtuberization of potato as effect of cytokinins, growth retardants and sucrose concentrations. The second objective of this research was to know the best cultivar to produce shoots from microtubers and after that produce minitubers. Three concentrations of Kin and BA (1, 2 and 3 mg/l) were used, also three concentrations of Paclobutrazol and Uniconazol (1, 2 and 3 mg/l) were used in this experiment. Likewise, some concentrations of sucrose were used at 20, 40, 60, 80, and 100 g/l to know the best concentration of sucrose to enhance microtubers formation. The results showed that the highest percentage of tuberization was obtained from cv. "Draga" grown on modified MS medium supplemented with 3 mg/l Kin or BA. The same results with both fresh weight of microtubers and its number of microtubers / propagule. With regard to growth retardants, the results showed also that the highest percentage of tuberization was obtained from cv. "Draga" grown on MS medium with 1 mg/l Paclobutrazol. The same results with both fresh weight of microtubers and its number of microtubers / propagule. The highest percentage of tuberization was obtained from cv. "Draga" when cultured on MS medium supplemented with 80 g/l sucrose. On the contrary, cvs. "Draga and Cara" produced the lowest values related to fresh weight of microtubers, its number of microtubers / propagule and percentage of microtuberization without significant difference on the control medium. 80g/l sucrose gave the highest values of weight of microtubers / propagule, weight of microtubers and number of microtubers / propagule and percentage of microtuberization. Significant differences appeared between two cultivars in the yield characteristics. That cv. "Draga" had the highest survival percentage of microtubers, plant height, stem, leaves number per plant. Significant differences appeared between two cultivars in the yield characteristics. That cv. "Draga" had highest fresh weight / propagule, total yield and number of minitubers / propagule.

Key word:

in vitro, Potato, Kinetin, Benzyl adenine, Paclobutrazol, Uniconazol, sucrose, minituber.

ACKNOWLEDGEMENT

I would like to express my deepest thanks and gratitude to **Prof. Dr. Ahmad Mahmoud El Gizawy,** Professor of vegetable crops, The Faculty of Agriculture, Ain Shams University for his supervision, valuable help and continuous support during preparing this work.

My deepest and sincere gratitude to **Prof. Dr .Ayman Farid Abou Hadid,** President of Agriculture Research Center, Agriculture
Ministry for suggesting the current study, his supervision and greet
help during carrying out and preparing of this work.

And my deepest thanks to **Prof. Dr. Graziano Zocchi,** Professor of Plant Physiology and Biochemistry, Department of Plant Production, Faculty of Agriculture, Milan University, Italy for his supervision and greet support during the training in Italy to prepare this work.

My sincere thanks to **Prof. Dr. Usama El-Behairy**, Professor of vegetable crops, Ain Shams University.

My sincere thanks to **Prof. Dr. Usama El-Zeiny,** Professor of Horticulture Research Institute.

My sincere thanks to all staff members of **Horticulture**Department, and Arid land Agriculture and Research Center.

Finally many thanks to my family, my wife and my son Hussein for overwhelming and care.

CONTENTS

	LIST OF TABLES	III
	LIST OF FIGURES	IV
	LIST OF PHOTO	VI
	LIST OF ABBREVIATIONS	VII
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Medium constituents	4
2.1.1	Effect of growth regulators	4
2.1.1.1	Effect of growth promotion	4
2.1.1.2	Effect of growth retardant	11
2.1.2	Effect of sucrose on microtubers production in-vitro	13
2.2	Productions of transplants from microtubers	21
2.3	Production of Minitubers	23
3	MATERIAL AND METHODS	25
3.1	Establish of an aseptic culture of potato	25
3.2	Rapid micropropagation of potato plantlets	26
3.3	Production of microtubers in vitro	27
3.31	Effect of growth promoting	27
3.3.2	Effect of growth retardant	27
3.3.3	Effect of sucrose	28
3.4	Production of plantlets	28
3.5	Production certified seed (Minitubers) of potato	29
4	RESULTS AND DISCUSSION	30
4.1	Microtuberization in vitro	30
4.1.1	Effect of growth regulators	30
4.1.1.1	Effect of cytokines	30
4.1.1.1.1	Percentage of microtuberization	30
4.1.1.1.2	Number of microtuber / propagule	34
41113	Fresh weight of microtuber	39

4.1.1.2	Effect of growth retardant	44
4.1.1.2.1	Percentage of microtuber	44
4.1.1.2.2	Number of microtuber/propagule	48
4.1.1.2.3	Fresh weight of microtuber	52
4.2	Effect of sucrose concentrations	59
4.2.1	Percentage of microtuber	59
4.2.2	Number of microtuber/propagule	62
4.2.3	Fresh weight of microtuber	65
4.3	Production of plantlets in vivo	69
4.3.1	Survival percentege and vegetative growth	69
4.4	Yeild and characters of minitubers	72
5	SUMMARY AND CONCLUSION	75
6	REFERENCES	78
	ARABIC SUMMRY	

LIST OF TABLES

Table (1)	Effect of cultivars, media and their interaction on	
	tuberization percentage of some potato cultivars	31
Table (2)	Effect of cultivars, cytokinins concentrations and their	
	interaction on number of microtubers / propagule of	
	some potato cultivars	36
Table (3)	Effect of cultivars, cytokinins concentrations and their	
	interaction on fresh weight of microtubers formed /	
	propagule of some potato cultivars	41
Table (4)	Effect of cultivars, growth retardants concentrations and	
	their interaction on tuberization percentage of some	
	potato cultivars	45
Table (5)	Effect of cultivars, Growth retardants concentrations and	
	their interaction on number of microtubers / propagule of	
	two potato cultivars	49
Table (6)	Effect of cultivars, Growth retardants concentrations and	
	their interaction on fresh weight of microtubers of two	
	potato cultivars	54
Table (7)	Effect of cultivars, sucrose concentrations and their	
	interaction on percentage of microtubers formed /	
	propagule	60
Table (8)	Effect of cultivars, sucrose concentrations and their	
	interaction on mean number of microtubers formed /	
	propagule	63
Table (9)	Effect of cultivars, sucrose concentrations and their	
	interaction on the mean fresh weight of microtubers	
	formed / propagule	66

LIST OF FIGURES

Fig (1)	Effect of potato cultivars on the percentage of	
	microtuber formation per propagule	32
Fig (2)	Effect of cytokinins concentration on the percentage of	
	microtuber formation per propagule	32
Fig (3)	Effect of BA and Kin on the percentage of	
	microtuber formation per propagule	33
Fig (4)	Effect of interaction between potato tested cultivars	
	and cytikinins on the percentage of microtuber	
	formation per propagule	33
Fig (5)	Effect of potato cultivars on the number of microtuber	
	formation per propagule	37
Fig (6)	Effect of cytokinin concentrations on the number of	
	microtuber formation per propagule	37
Fig (7)	Effect of BA and Kin on the number of microtuber	
	formation per propagule	38
Fig (8)	Effect of interaction cytikinin concentrations and	
	cultivars on the number of microtuber formation per	
	propagule	38
Fig (9)	Effect of potato cultivars on the fresh weight of	
	microtuber formation per propagule	42
Fig (10)	Effect of cytokinin concentrations on the fresh weight	
	of microtuber formation per propagule	42
Fig (11)	Effect of BA and Kin on the fresh weight of microtuber	
	formation per propagule	43
Fig (12)	Effect of interaction on the fresh weight of microtuber	
	formed per propagule	43
Fig (13)	Effect of potato cultivars on the tuberization percentage	
	of microtubers formed per propagule	46

Fig (14)	Effect of growth retardant concentrations on the	46
	tuberization percentage of microtubers formed per	
	propagule	
Fig (15)	Effect of Paclobutrazol and Uniconazol on the	
	tuberization percentage of test two potato cultivars	47
Fig (16)	Effect of the interaction effect of both tested factors on	
	the tuberization percentage	47
Fig (17)	Effect of potato cultivars on the mean number of	
	microtubers formed / propagule	50
Fig (18)	Effect of growth retardant concentrations on the	
	number of microtubers formed / propagule	50
Fig (19)	Effect of Paclobutrazol and Uniconazol on the mean	
	number of microtubers formed / propagule	51
Fig (20)	Effect of the frist order interaction on the mean number	
	of microtubers formed / propagule	51
Fig (21)	Effect of potato cultivars on the fresh weight of	
	microtuber formation / propagule	55
Fig (22)	Effect of growth retardant concentrations on the fresh	
	weight of microtuber formation per propagule	55
Fig (23)	Effect of kinds of growth retardants on the mean fresh	
	weight of microtubers formed per propagule	56
Fig (24)	Effect of the order interaction between growth	
	retardents and cultured cultivars on the mean fresh	
	weight of microtuber formed per propagule	56
Fig (25)	Comparison between effect of both growth retardants	
	and cytokinins on the percentage of microtuberization	
	per propagule	57
Fig (26)	Comparison between effect of both growth retardants	
	and cytokinins on the mean number of microtubers	
	formed per propagule	57

Fig (27)	Comparison between effect of both growth retardants	
	and cytokinins on the average of fresh weight of	58
	microtubers formed per propagule	
Fig (28)	Effect of cultivars and sucrose concentrations on the	
	percentage of microtubers formed per propagule	61
Fig (29)	Effect of cultivars and sucrose concentrations on the	
	mean number of microtubers formed per propagule	64
Fig (30)	Effect of cultivars and sucrose concentrations on the	
	mean fresh weight of microtubers formed per	
	propagule	67
Fig (31)	Plan illustrates the effect of sucrose on the metabolism	
	inside cell	68
Fig (32)	Survival percentage of potato cultivar's after	
	transplanting in greenhouse	70
Fig (33)	Plant height,stem and leaves number, and total	
	chlorophyll of potato microtuber's after transplanted	
	in greenhouse	71
Fig (34)	Total yield, number of minitubers per plant, and the	
	mean fresh weight of potato minitubers after	
	transplanting in greenhouse via microtubers	73

LIST OF PHOTO

Plate (1) for planntlet during microtuber formation	74
Plate (2) for micropropagate of planntles	74
Plate (3) for planntlet during microtuber formation	74
Plate (4) for planntlet during microtuber formation	74
Plate (5) for planntlet during microtuber formation	74
Plate (6) for microtubes formed	74
Plate (7) for transplants growed in pots	74
Plate (8) for minitubers formed	74

LIST OF ABBREVIATIONS

Abbreviation Full name

ABA Abscisic acid

BAP = BA 6-Benzylaminopurine = Benzyladenine

CCC Cycocel (chlorocholine chloride)

CIP International Potato Center

cv (s) Cultivar (s)

2,4-Dichlorophenoxy acetic acid

GA₃ Gibberellic acid

h Hour

IAA Indole acetic acid

Kin Kinetin (6-Furfurylaminopurine)

Lux Light intensity unit

M Molar
mM Millimolar
Mg Microgram
HM Micromolar
Hmol Micromol

MS Murashige and skoog medium (1962)

NAA Naphthalene acetic acid PLRV Potato leaf roll virus

PVX Potato virus X
PVY Potato virus Y
w/v weight to volume
v/v Volume to volume

1- INTRODUCTION

The potato, in terms of quantity, comes fourth after rice, wheat and corn on the list of the crop species that are most important for the human nutrition worldwide (**FAO**, **2008**). More than one-third of the global potato output now comes from developing countries, comparing to just 11% in the early 1960s. According to the latest FAO data, potato production worldwide stands at 327 million tons and covers more than 18 million hectares.

Egypt is one of the largest producers and exporters of potatoes in Africa. Potato is the second most important vegeTables after tomato. Commercial production of potato (Solanum tuberosum) in Egypt concentrates in the Nile Delta and mid of Egypt. Potato (Solanum tuberosum) is cropped continuously in Egypt from August to June (Geddes and Monninkhof, 1984). The area grown in Egypt was 153745 Fadden, and total production was 1654537 ton, and yield / Fadden was 10.762 ton/Fadden (Bulletin of Agriculture Statistics, 2009).

Potato productions systems are needed to meet the increased demand of people worldwide (CIP, 1984).

the potato is infected by a many of diseases such as *Rhizoctonia* and *fusarium*, leading to use the fungicide as stated before method has dangerous effects on livings and cause much dangerous disease as cancer.

Many techniques have been developed during the last decades for producing potato certified seeds, such as plant tissue culture. Tuber production *in vitro* was described as an