Diagnostic and Prognostic Value of Alpha-Lfucosidase as a Tumor Marker of HCC in Egyptian Patients

Thesis submitted for partial fulfillment of Master degree in Tropical Medicine

By

Mohamed Sobhy Mohamed M.B., B.cH

Under supervision of

Prof. Mohamed Fawzy Montaser

Ex. Dean of Faculty of Medicine - Ain Shams University Professor of Tropical Medicine

Prof. Mohamed Amin Sakr

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr. Mohamed Omar Khalifa

Lecturer of Tropical Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2009

Diagnostic and Prognostic Value of Alpha-L-fucosidase as a Tumor Marker of HCC in Egyptian Patients

Thesis submitted for partial fulfillment of Master degree in Tropical Medicine

By

Mohamed Sobhy Mohamed *M.B.*, *B.cH*

Under supervision of

Prof. Mohamed Fawzy Montaser

Ex. Dean of Faculty of Medicine - Ain Shams University Professor of Tropical Medicine

Prof. Mohamed Amin Sakr

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr. Mohamed Omar Khalifa

Lecturer of Tropical Medicine
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

First and foremost, thanks for **ALLAH** for guiding and helping me to finish this work

I would like to express my deepest thanks and sincere gratitude to **Prof. Mohamed Fawzy Montaser**, Ex. Dean of Faculty of Medicine and Professor of Tropical Medicine, Ain Shams University, for his close supervision, valuable instructions, continuous help and sincere advice.

Words stand short to express my deep appreciation and sincere gratitude to **Prof. Mohamed Amin Sakr,** Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his continuous guidance and pioneer advices that put me on the right way. It was a great honor to me to work under his supervision.

I wish to introduce my deep respect and thanks to **Dr. Mohamed Omar Khalifa**, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his valuable supervision, sincere advice and his immense effort in the practical part of this study.

I am much grateful to all my colleagues in Tropica, Department and HCC clinic for their co-operation and support and also to all patients included in this study. In addition, I wish to thank **Dr. Tarek Diab** for his help and co-operation in producing statistics and data analysis. Also, I would like to thank **Dr. Mahmoud Abu El Fotouh** for his sincere help in producing the lab results.

List of contents

Subject	Page
Introduction	1
Aim of The Work	3
Review of literature (Hepatocellular Carcinoma).	4
Chapter 1: Epidemiology	4
Chapter 2: Molecular Pathogenesis & Pathology	21
Chapter 3: Spread Of HCC & Screening and Surveillance for Hepatocellular Carcinoma	29
Chapter 4: Clinical and Laboratory Features	33
Chapter 5: Diagnosis	51
Chapter 6: Treatment of HCC	83
Chapter 7: Alpha-L-fucosidase	120
Subjects and Methods	126
Results	135
Discussion	158
Summary	169
Conclusion	171
Recommendation	172
References	173
Protocol of the Study	
Arabic Summary	

List of Tables (Review of Literature-Subjects & Methods)

No.	Title	
1	Groups of patients in whom surveillance of HCC is recommended	32
2	Okuda Staging Variables	39
3	TNM stage grouping	41
4	Child- Pugh Score	42
5	CLIP Score	43
6	Japan Integrated Staging Score	44
7	Liver damage grade	45
8	Modified Japan Integrated Staging	45
9	SLiDe Classification	46
10	French classification	46
11	Definitions of CUPI score	47
12	BCLC practical staging of HCC	49
13	Molecular therapies currently tested for HCC treatment	102
14	Modified Child score	129

List of tables (Results)

No.	Title	Page
1	Demographic features of the studied groups	135
2	Medical history of the studied groups	136
3	Relevant clinical findings in the studied patients	137
4	Viral markers of the studied groups	138
5	Child's classification of the studied patients	139
6	Abdominal ultrasonographic findings of the patient groups	140
7	CT findings of HCC group	143
8	Level of AFP and AFU in different studied groups	144
9	Level of AFP and AFU in HCC group classified according to number of hepatic focal lesions	146
10	Level of AFP and AFU in HCC group classified according to Child's Classification	147
11	Level of AFP and AFU in HCC group classified according to size of hepatic focal lesions by U/S.	147
12	Level of AFP and AFU in HCC group (Pre & post-intervention)	148
13	Correlation between AFU level and the other parameters in the studied patients	150
14	Sensitivity and Specificity of AFP at different cutoff values	153
15	Sensitivity and Specificity of AFU at different cutoff values	155
16	Sensitivity, Specificity, PPV, NPV and Accuracy of both AFP and AFII markers (CLD vs HCC)	157

List of figures (Review of literature)

No.	Title	Page
1	Strategy for staging and treatment assignment in patients diagnosed with HCC according to the BCLC proposal.	50

List of figures (Results)

1	Medical history of studied groups	136
2	Viral markers of the studied groups	138
3	Child's classification of HCC patients	139
4	Child's classification of CLD patients	139
5	Number of hepatic focal lesions in HCC group	141
6	Site of the largest hepatic focal lesions in HCC patients by U/S	141
7	Size of the largest hepatic focal lesions in HCC patients by U/S	142
8	Echogenecity of the hepatic focal lesions in HCC group.	142
9	Mean level of AFP (ng/ml) in the studied groups.	145
10	Mean level of AFU in the studied groups	145
11	AFP levels (ng/ml) in HCC patients before and one month after intervention.	148
12	AFU levels (μmol/L/min) in the HCC group before and one month after intervention	149
13	Correlation between AFU level and AFP level in HCC patients.	151
14	Receiver operating characteristic (ROC) curve of AFP plotted for the diagnosis of HCC in cirrhotics.	152
15	Receiver operating characteristic (ROC) curve of AFU plotted for the diagnosis of HCC in cirrhotics	154
16	Receiver operating characteristic (ROC) curve of AFP and AFU enzyme activities plotted for the diagnosis of HCC in CLD patients.	156

List of abbreviations

	American Association for the study of the
AASLD	liver disease
AAT	Alpha-1-antitrypsin
Ad	Adenoviral
AFB1	Aflatoxin B1
AFP	Alpha-fetoprotein
AFPIC	Alpha-fetoprotein immunocomplexes
AITIC	Lens culinaris agglutinin reactive alpha
AFP L3	
ATI	fetoprotein Alpha I fugacidasa
AFU	Alpha-L-fucosidase
AJCC	The American Joint Committee on Cancer
ALP	Alkaline phosphatase
ALT	Alanine transaminase
ANOVA	Analysis of Variance
AST	Aspartate transaminase
BCLC System	The Barcelona-Clinic- Liver-Cancer system
BCS	Budd-Chiari syndrome
BSA	Bovine Serum Albumin
CD	cytosine deaminase
CECT	Contrast enhanced helical computed
CECT	tomography
CEUS	Contrast enhanced ultrasound
CgA	Chromogranin-A
CLD	Chronic liver disease
CLIP	The Cancer of the Liver Italian Program
СТ	Computed tomography
CTAP	CT arterial portography
СТНА	CT during hepatic arteriography
CUPI	Chinese University Prognostic Index
DCP	Des-gamma carboxyprothrombin
DGCP	Des-γ-carboxy prothrombin
DNA	Dinucleic acid
DPR	The differential positive rate curve
EASL	European association for the study of the
רעטר	Laropean association for the study of the

	liver
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
5-FC	5fluorocytosine
FDA	Food and Drug Administration
FLR	Future liver remnant
FNAB	Fine needle aspiration biopsy
5-FU	5-fluorouracil
GCV	Ganciclovir
GGT	Gamma-glutamyl transpeptidase
GP73	Golgi protein 73
GPC3	Glypican-3
G6P	7.7
H-ALP	Glucose-6-phosphatase HCC Specific Alkaline Phosphatase
HBV	Hepatitis B virus Hepatocellular carcinoma
HCC HCV	Hepatitis C virus
	*
HFL	Hepatic focal lesion
HGF	Hepatocyte growth factor
HIFU	High intensity focused ultrasound
HMG CoA	Hydroxy methyl glutaryl coenzyme A
reductase	reductase
HS-GGT	Hepatoma-specific GGT
HSP	Heat shock protein
HSV	Herpes Simplex virus
HSV-tk	Herpes simplex virus thymidine kinase
hTERT	Human telomerase reverse transcriptase
HTN 131I	Hypertension
	Iodine-131
ICG	Indocyanine Green
ICG R15(%)	Indocyanine Green retention rate at 15 minutes
IGF-II	Insulin like growth factor- II
ILP	Interstitial laser photocoagulation
IL-8	Interleukin-8
INR	International normalized ratio

IVC	Inferior vena cava
JIS Score	The Japan Integrated Staging score
LCA	Lens culinaris agglutinin
LCSGJ	The Liver Cancer Study Group of Japan
LDH	Lactate dehydrogenase
LITT	Laser induced thermotherapy
LT	Liver Transplantation
MAA	Macro-aggregated albumin
MCT	Macro-aggregated albumin Microwave Coagulation Therapy
MDCT	Multidetector helical CT
MELD	The Model for End Stage Liver Disease
mJIS	The modified Japan Integrated Staging
MOVC	Membranous obstruction of the inferior
MOVC	vena cava
MPCT	Multiphasic helical CT
MRI	Magnetic resonance imaging
mRNA	Massenger Ribonucleic acid
NASH	Nonalcoholic steatohepatitis
5`-NPD	5`-Nucleotide phosphodiesterase
OLT	Orthotopic liver transplantation
PAS	Periodic acid–Schiff
PAT	Parenteral anti-schistosomal treatment
PBC	Primary biliary cirrhosis
PBMCs	Peripheral blood mononuclear cells
PCT	Porphyria cutanea tarda
PDGFR	Platelet derived growth factor receptor
PEI	Percutaneous ethanol injection
PEIT	Percutaneous ethanol injection treatment
PIAF	Cisplatin/Interferon
TIAI	a2b/Doxorrubicin/Fluorouracil
PIVKA-II	Protein induced by vitamin K absence or antagonist II
PMCT	Percutaneous Microwave Coagulation
PS	The performance status score
PSC	Primary sclerosing Cholangitis
PSI	Percutaneous hot saline injection

DITO	D . C 1
PUO	Pyrexia of unknown origin
PVE	Portal vein embolism
PVT	Portal vein thrombosis
RCT	Randomized Controlled Trial
RFA	Radiofrequency ablation
RILD	Radiation induced liver disease
ROC	The receiver operating characteristic curve
RT-PCR	Reverse transcription polymerase chain
K1-1 CK	reaction
SBP	spontaneous bacterial peritonitis
SCCA	Serum squamous cell carcinoma antigen
SCCAIC	Serum squamous cell carcinoma antigen
SCCAIC	immunocomplexes
SD	Standard Deviation
	Surface-enhanced laser
SELDI-TOF	desorption/ionization-time of flight mass
	spectrometry
sGPC3	soluble Glypican-3
SIRT	Selective internal radiation therapy
TACE	Transarterial chemoembolization
TGF-α	Transforming growth factor-α
TGF-β1	Transforming Growth Factor-beta 1
TNM Staging	Tumor, Node and Metastases Staging
System	System
UNOS	United Network of Organ Sharing
US	Ultrasonography
VEGF	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
VSV	Vesicular Stomatitis virus
WHO	World Health Organization

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common neoplasm in the world and the third most common cause of cancer related death (*Llovet et al.*, 2003). It causes an estimated 1,2500,00 deaths every year worldwide (*Globocan*, 2000 and Bazarbashi, 2000). HCC constitutes 7.5% of all cancer types in males and is the 5th most frequent cancer site for males after lung, prostate, stomach and colorectal cancer. For females, it is the 8th most common, accounting for 3.5% of all cancer types. Its incidence is increasing worldwide ranging between 3% and 9% annually (*Velazquez et al.*, 2003).

Hepatitis B (HBV) or C virus (HCV) chronic infections account for 75% of HCCs whereas nonviral etiologies as alcohol, genetic or metabolic disorders represent less than 25% of cases (*Llovet et al.*, 2003). Furthermore, western countries suffer from a substantial and constant increase of HCC incidence due to HCV infection. Dramatically, HCC is a poor prognosis tumor, and is the first cause of death in cirrhotic patients. Current therapies are rather inefficient, mainly due to late diagnosis in usual and high recurrence rates within the remaining cirrhotic liver after surgical resection (*El-Serag et al.*, 2003). Therefore, early detection is important in the management of this type of cancer.

Surveillance programs have been conducted in many countries to detect HCC at an early stage. Alpha fetoprotein (AFP) and ultrasonography are usually used as diagnostic tools (*Giardina et al.*, 1998). However, not all HCC secrete AFP and AFP levels may be normal in as many as 40% of patients with

early HCC (*Pateron et al.*, 1994). Ultrasonography is very effective in the early diagnosis of HCC and because of its improved performance, HCC was detected in 76% of HCC cases in a surveillance program (*Zoli et al.*, 1972). However, ultrasonographic findings sometimes are not specific (*Mayes*, 2000) and contrasting data have been reported in the past regarding the utility of ultrasonography in the diagnosis of HCC at an early stage, even when performed together with serum AFP level determination. Therefore, more sensitive diagnostic tools for detecting HCC are desirable, particularly in the screening of cirrhotic patients, because it has been suggested that the disease may respond more favorably to treatment at an early stage (*Pateron et al.*, 1994).

Tumor markers are potential screening tools that are widely used for early diagnosis of tumors (*Elshemey et al.*, 2003). Many research groups are evaluating the sensitivity of available tumor markers and also are investigating the development of novel markers. The primary marker for HCC is α -fetoprotein (AFP), a single polypeptide chain glycoprotein. Generally, AFP shows acceptable sensitivity; however, AFP is not secreted in all cases of HCC and may be normal in as many as 40% of patients with early HCC (*Nakatsura et al.*, 2003).

Among other HCC tumor markers is α -L-fucosidase (AFU), a lysosomal enzyme present in all mammalian cells. AFU has been proposed as a tumor marker since many studies reported increased AFU serum levels in patients with cirrhosis and HCC (*Giardina et al.*, 1998). However, it is not correlated to AFP level in serum (*Tangkijvanich et al.*, 1999).