THE ROLE OF MULTIDETECTOR HELICAL COMPUTED TOMOGRAPHY IN ASSESSMENT OF LOCAL BREAST CANCER EXTENT

Essay

Submitted for partial fulfillment of Master degree in Radiodiagnosis

Вy

WAFAA ABDALLAH ABDALLAH MOHAMED ARFEEN
M.B.,B.Ch. (2005)
Faculty of Medicine
Ain Shams University

Supervised By

DR. NAGLAA HUSSEIN SHEBRYA

Assistant Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

DR. MOHAMED ALGHARIB ABOU ELMAATY

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Radiodiagnosis Department Faculty of Medicine Ain Shams University 2011

Acknowledgment

First and foremost, praise and thanks be to the Almighty (ALLAH) for his limitless help and guidance and peace be upon his prophet.

I would like to express my deepest thanks, gratitude and profound respect to my honored professor, Dr. Naglaa Hussein Shebrya, assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision. I consider myself fortunate to work under her supervision. Her constant encouragement and constructive guidance were of paramount importance for the initiation, progress and completion of this work.

No words can describe the effort and help of Dr. Mohamed Algharib Abou Almaaty, assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great support, facilities, careful supervision and continous advice and guidance which were cornerstone for this work and helped me to overcome many difficulties.

Last but not least, I would like to express my endless gratitude to my family, my husband, my son and my friends for their ever lasting love, care and support.

Wafaa Abdallah Abdallah

Contents

- 1. Introduction and aim of work.
- 2. Anatomy.
- 3. Pathology of breast cancer.
- 4. Basics and technique of multidetector helical CT.
- 5. Role of helical Multidetector CT in assessment of breast cancer extent.
- 6. Summary and conclusion.
- 7. References.
- 8. Arabic summary.

List of Tables

Table No.	Title	Page
Table (1):	TNM staging OF BREAST CANCER	
Table (2):	Helical multidetector CT protocol	

List of Figures (Cont...)

Figure	Title	Page
No.		
Fig.	Normal breast anatomy	
(1):		
Fig.	Mammary gland A. in pregnancy, B. late	
(2):	pregnancy, C. resting	
Fig. (3):	Blood supply to the Breast	
Fig. (4):	Breast lymphatic drainage	
Fig. (5):	Normal CT anatomy of female breast	
Fig.	Non-invasive ductal carcinoma in situ	
(6):	(DCIS) in an enlarged cross-section of the duct.	
Fig.	Lobular carcinoma in situ (LCIS) in an	
(7):	enlarged cross-section of the lobule.	
Fig.	Invasive ductal carcinoma (IDC) in an	
(8):	enlarged cross-section of the duct.	
Fig.	Invasive lobular carcinoma (ILC) in an	
(9):	enlarged cross-section of the	
	lobule	

Fig. (10):	MD helical computed tomographic scanners, the x-ray tube rotates around the	
	patient	
Fig. (11):	An illustration for pitch	
Fig. (12):	An illustration of some different pitches	
Fig. (13):	Drawings illustrate the geometry of a CT scanner customized for breast imaging	
Fig. (14):	3D CT lymphographic images.	
Fig. (15):	a) Transverse post-contrast CT images. b) Corresponding 3D CT lymphographic images	
Fig. (16):	Invasive ductal carcinoma. (a) Axial scan and coronal (b) nonenhanced MDCT scans	
Fig. (17):	Invasive ductal carcinoma. (a) Axial scan and coronal (b) contrast-enhanced MDCT scans	
Fig. (18):	Invasive ductal carcinoma. Axial (a) and coronal (b) contrast- enhanced MDCT scans and craniocaudal mammogram of the left breast	

	(c)	
Fig.	Invasive lobular carcinoma. Serial axial	
(19):	contrast-enhanced MDCT scans,	
	displayed from cranial (a) to caudal	
	(c)	
Fig.	Secondary lymphoma of the breast. (A)	
(20):	Contrast- enhanced MDCT scan shows	
	bilateral marked axillary adenopathy	
	(arrows)	
Fig.	Inflammatory carcinoma. (a) Contrast-	
(21):	enhanced MDCT scan	
Fia:	Inflammatamy consinama (a.h.) Contract	
Fig.	Inflammatory carcinoma. (a, b) Contrast-	
(22):	enhanced MDCT scans	
Fig.	Postoperative hematoma or seroma.	
(23):	Contrast-enhanced MDCT scan	
F'-		
Fig.	Postoperative hematoma or seroma. (a–c)	
(24):	Serial nonenhanced MDCT	
	scans	
Fig.	Postoperative scar. (a) Nonenhanced	
(25):	MDCT scan shows a spiculated dense	
_	mass. (b) Corresponding craniocaudal	
	mammogram of the right breast	
Fig.	Postoperative scar. Axial (a) and coronal	
(26):	(b) contrast-enhanced MDCT	
	scans	

Fig.	64-year-old woman with invasive ductal	
(27):	cancer	
Fig.	Pectoral invasion of a primary tumor	
(28):		
Fig.	Intraductal component of invasive	
(29):	·	
(23).	tumors visualized using radiologic	
	imaging	
Fig.	Intraductal component of invasive	
(30):	tumors visualized using radiologic	
	imaging	
	10.0	
Fig.	55-year-old woman with invasive ductal	
(31):	carcinoma in right breast.MIP images of	
	MDCT	
F'-	11' CMDI	
Fig.	oblique partial MIP images of MRI	
(32):	images of the previous	
	patient	
Fig.	43-year-old woman with invasive ductal	
(33):	carcinoma in right breast.MDCT	
(33).	image	
	mage	
Fig.	43-year-old woman with invasive ductal	
(34):	carcinoma in right breast	
Fig.	MRI image of the same patient reveals a	
(35):	clumped enhancement (arrowheads) distal	
	to main tumor (arrows)	

List of Abbreviations

American joint committee on cancer. AJCC..... Breast cancer with limited extent. BCLE BCS..... **Breast conserving surgery. BCT..... Breast conserving treatment** BI-RADS..... Breast imaging-reporting and data system. CE-MDCT..... Contrast enhanced multidetector computed tomography. CIS..... Carcinoma in situ computed tomography. CT..... DCIS..... **Ductal carcinoma in situ EIC..... Extensive intraductal components** Enh%..... **Enhancement percent ratio** Fig..... figure FOV..... Field of view HRCT..... **High resolution CT HU**..... Housefield unit IDC..... Invasive ductal carcinoma. IDS..... Intraductal spread. ILC..... Invasive lobular carcinoma. LCIS..... Lobular carcinoma in situ. **MDCT.....** multidetector computed tomography. MIP Maximum intensity projection. MPR..... Multi-planar reformatting. MRI..... Magnetic resonance imaging. MSCT..... **Multislice CT** Non-BCLE..... Breast carcinoma with non limited extent. **PPV**..... Positive predictive value. **RE.....** Rim enhancement. **ROIs** Regions of interest. RSNA.... Radiology society of north America. SLN..... Sentinel lymph node. SSD..... Shaded surface display.

SSP	Section sensitivity profile.
US	Ultrasonography.
VR	Volume rendering.

Introduction

Breast cancer is one of the most important disease for women in the world and Constitute one fourth of all cancers in females. The lifetime probability of developing breast cancer is 1 to 7 for females

Breast cancer is 100 times less common in men than in women.

Breast cancer accounts for approximately 15% of female cancer death. It is the leading cause of death in women aged 44 – 50 years (**HamantSinghal 2006**).

Conventional mammography and Sonography of the breast are routinely used as imaging techniques in the diagnosis of the breast cancer worldwide, However, both mammography and U.S have well recognized limitation either due to factors in the breast parenchyma such as dense breast in young females, post operative changes of effect of irradiation or factors in the modality itself such as , the inability of mammography to demonstrate the deep part of the breast and the operator dependency of ultrasonography (Heywang and Beck 2000).

Nowadays with the progression of CT technology, helical MDCT is

now has a very promising role as complementary tool to mammography and sonography. In practice, MDCT is indicated for pre-operative patients with breast cancer to detect multicenteric or multifocal lesions and to assess the extent of breast cancer and for patients with indeterminate findings for breast lesions on conventional modalities to differentiate malignancy from benign lesion (Sardanelli F 2002).

In comparison between helical MDCT and mammography, the standard mammography detects tumors at an average size of 11 mm in diameter, about the size of garbanzo bean (chicken pea). MDCT of breast

aim to detect tumors of average size 5 mm or less, about the size of pea (**John M Boone 2007**) .

MDCT is designed to distinguish benign lesions and calcifications from tiny cancers that are sometimes hidden within dense tissue also, the MDCT system clearly displays tissue around the ribs and outer breast toward the armpit, where 50% of cancers are found. (O,Conell et al 2007).

One of the disadvantages of MDCT is the breast exposure to radiation.

The measured radiation dose at the skin surface of the breast for a single breath-hold acquisition of MDCT is about 25 MGy, similar to the dose reported for conventional CT and approximately 10 times higher than the dose received during standard mammography (**Uematso 2001**).

This disadvantage may not be a serious problem for patients who are thought to have breast cancers on basis of findings on other diagnostic techniques.

Helical MDCT examination of the breast has been introduced as a promising method of diagnosis of breast neoplasms and for clarifying uncertain cases after mammography and or US and it may be able to provide information similar to all much better than that obtained with dynamic MR (Sardanelli 2002).