

Ain Shams University

Faculty of Pharmacy

Department of Pharmaceutics

MICROEMULSION SYSTEMS FOR INTRANASAL DRUG DELIVERY

A Thesis

Submitted in Partial Fulfilment of the Requirements for Master Degree of Pharmaceutical Sciences In

Pharmaceutics

BY

Hend Mohamed Abd el-Bar Hamad

Under the supervision of

Prof. Dr Nahed Daoud Mortada

Professor of pharmaceutics and faculty of pharmacy dean, Ain Shams University

Dr Gehanne Abdel Samie Awad

Associate Professor of Pharmaceutics and Head of Department of Pharmaceutics, Faculty of pharmacy, Ain Shams University

Dr Amal youssef Abd el-Reheem

Researcher of Pharmaceutics in NODCAR & lecturer of Pharmaceutics in MUST University

(2011)

كليه الصيدله

قسم الصيدلانيات

استخدام أنظمة المستحلبات الدقيقه للايتاء الدوائى عن طريق الأنف

رساله مقدمه لنيل درجة الماجستير في العلوم الصيدليه

(صيدلانيات)

إعداد

هند محمد عبدالبرحماد

تحت إشراف

الأستاذه الدكتوره/ ناهد داود مرتضى

أستاذ الصيدلانيات و عميد كليه الصيدله جامعه عين شمس

الدكتوره/ چيهان عبدالسميع عوض

أستاذ مساعد الصيدلانيات و رئيس قسم الصيدلانيات كليه الصيدله جامعه عين شمس

الدكتوره/ امال يوسف محمد عبد الرحيم

الباحثه بالهيئه القوميه للرقابه و البحوث الدوائيه و مدرس الصيدلانيات بجامعه مصر للعلوم و التكنولوجيا

 $(\Upsilon \cdot \Upsilon \cdot)$

Dedicated to my mother, father and my brother Ahmed

Acknowledgment (1984)

Praise is to **ALLAH**, the most merciful and most gracious, by the help of whom this work has been completed.

I would like to express my sincere appreciation to Prof. **Dr Nahed Daoud Mortada**, Professor of pharmaceutics and faculty of pharmacy dean, Ain Shams University, for her kind supervision, suggestions and warm advices.

I am in great debt to **Dr Gehanne Abdel Samie Awad**, Associate Professor of Pharmaceutics and Head of Department of Pharmaceutics, Faculty of pharmacy, Ain Shams University who honored me by accepting my Master study under her coordination. I deeply appreciate her valuable scientific supervision, continuous guidance during this work, careful and exigent reading of the thesis, the critical comments, suggestions and corrections. She has become a mentor and an example for my academic and personal life

I am also grateful to **Dr Amal youssef**, Researcher of Pharmaceutics in NODCAR, for her teachings on microemulsion science, valuable advices, support and efforts for this work.

Here is my chance to thank my best friend **Akram Mostafa** for his encouragement, support and understanding not only during this work but in all my life.

I would like to extend my deep thanks to all the staff members and all my colleagues in the Department of Pharmaceutics, **NODCAR**.

Special debt of gratitude is greatly acknowledged to my beloved mother, father and my brother Ahmed for their support, understanding, patience, love and encouragement during my whole life.

List of Content

Title	Page
GENERAL INTRODUCTION	1
Intranasal Drug Delivery	2
Local Delivery	$\frac{-}{2}$
Systemic Delivery	3
Biopharmaceutical Considerations in Relation to Nasal Route	7
Nasal Anatomy	7
Mechanisms of Nasal Drug Absorption	16
Factors Influencing Nasal Drug Absorption	18
Nasal Physiological Factors	19
Physicochemical Properties of Drugs	23
Effect of Drug Formulation	26
Microemulsions as Nasal Drug Delivery Systems	28
Clonazepam	34
Scope of Work	37
Chapter I: Formulation and Evaluation of Nasal clonazepam Micro	roemulsions
Introduction	38
Microemulsion	38
Components of Microemulsion Formulations	41
Oil Phase	41
Surfactants	42
Cosurfactants	43
Method of Preparation	44
Factors Affecting the Microemulsion	46
HLB and Packing Ratio	46
Property of Surfactant, Oil Phase and Temperature	47
The Chain Length, Type and Nature of Cosurfactant	48
Advantages of Microemulsion	49
Organogel	50
Organogel Composition	51
Phase Behavior of Organogels	55
Organogel Structure and Mechanism of Organogelling	56
Pharmaceutical Applications of Legithin Organogel	60

List of content

Liquid Crystal	62
Liquid crystal classifications	64
Nematic Phases	65
Smectic Phases	66
Lyotropic liquid crystals	67
Pharmaceutical Significance of Liquid Crystals	70
EXPERIMENTAL	74
Materials	74
Equipment	75
Methodology	76
Preparation of Clonazepam Microemulsion	76
Construction of Phase Diagram	76
Spectrophotometric Studies of Clonazepam	79
Determination of Saturated Solubility of Clonazepam in IPM and Triacetien	79
Formulation of Microemulsion Systems Containing 1% w/w Clonazepam	80
In-vitro Evaluation of Selected Clonazepam Formulae	81
Polarized Light Microscopy Study	81
Determination of λmax of Clonazepam in Alcoholic Phosphate Buffers at	81
Different pH Values	01
Determination of Saturated Solubility of Clonazepam in Phosphate Buffers at Different pH Values	81
Construction of Calibration Curve of Clonazepam in Alcoholic Phosphate	0.0
Buffer pH6.5	82
In-vitro Release Study	82
Modification of Microemulsion Composition to Prolong Nasal Residence	0.4
Time	84
Use of Sodium Carboxymethyl Cellulose	84
Preparation of Lecithin Organogel Based Microemulsion	84
Viscosity Measurements	85
Particle Size Measurement	85
Conductivity Measurement	85
Differential Scanning Calorimetric Measurements (DSC)	86
Thermal Stability	86
Gravitational Stability	87
Statistical analysis	88
RESULT and DISCUSSION	89
Construction of Microemulsion Phase Diagrams	89
IPM Based Systems	89
Effect of Surfactant	90

List of content

Effect of Cosurfactant	91
Triacetien Based Systems	93
Effect of Surfactant	93
Effect of Cosurfactant	94
Determination of λmax of Clonazepam in Ethanol	100
Standard Calibration Curve of Clonazepam in Ethanol	100
Saturated Solubility of Clonazepam in IPM and Triacetien	101
Formulation of Microemulsion Systems Containing 1% w/v	
In-vitro Evaluation of Selected Clonazepam Microemulsion Fo	
Polarized Light Microscope Study	110
Determination of λmax of Clonazepam in Alcoholic Phospl	
Saturated Solubility of Clonazepam in Different Phosphate	
Standard Calibration Curve of Clonazepam in Alcoholic Ph	osphate Buffer
pH6.5	
In-vitro Release Study	114
Effect of Oil Type	114
Effect of Oil Concentration	115
Effect of Surfactant Type	116
Effect of Cosurfactant Type	117
Effect of surfactant to cosurfactant ratio	118
Modification of Microemulsion Composition to Prolong Na	isal Residence 129
Time	120
Sodium Carboxymethyl Cellulose	130
Lecithin Organogel Based Microemulsion (LOs)	134
Viscosity measurements	143
Particle size measurement	146
Conductivity Measurement	149
Differential Scanning Calorimetric Measurements (DSC)	150
Physical Stability	153
Accelerated Physical Stability Testing	153
Conclusion	163
<u>Chapter II: Pharmacokinetics and brain distribution study</u> <u>formulae</u>	<u>of clonazepam nasal</u>
Introduction	166
Different Transport Mechanisms across BBB	169
Different Brain Targeting Strategies DIRECT CNS DELIVERY	172
	172
Intravenous Delivery of Nanocarriers	174
Intranasal Delivery	178