Neurosonologic and Cognitive Evaluation of Systemic Lupus Erythematosus Patients

THESIS

Submitted in the fulfillment of the M.Sc. Degree in Neurology and Psychiatry

By

Mohamed Ibrahim Raslan Hegazy

(M.B., B.CH, Cairo University)

Supervised by

Professor Dr. Ahmed Talaat El Ghoneimy

Professor of Neurology Cairo University

Dr. Yahia Zakaria Abd-Elhamid

Assistant Professor of Neurology Cairo University

Dr. Nirmeen Adel Khishk

Assistant Professor of Neurology Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY 2010 и

''

()

ACKNOWLEDGMENT

First of all, I would like to thank ALLAH who granted me the strength to accomplish this work.

I would like to express my gratitude and deepest appreciation to *Prof.*Dr.Ahmed Talaat El Ghoneimy, Professor of Neurology, Faculty of Medicine, Cairo University, for inspiring me with the idea of this work. His patience, precious advice and guidance enlightened my way throughout this work. Thank you ... I will always be indebted to you.

I am deeply thankful to *Dr. Yahia Zakaria*, *Assistant Professor of Neurology*, *Faculty of Medicine*, *Cairo University*, for his kindness, help and sincere encouragement throughout the preparation of this work.

Special thanks go to *Dr.Nirmeen Adel*, *Assistant Professor of Neurology, Faculty of Medicine, Cairo University*, for her help, sincere advice and huge support all through.

I am also grateful to *Dr.Abir Mokbel*, *Lecturer of Rheumatology*, *Faculty of Medicine*, *Cairo University*, for her valuable help.

I would also like to express my sincere appreciation for Dr.Marwa Fargahly, Lecturer of Neurology Faculty of Medicine, Cairo University, for her precious assistance and support.

Finally I would like to extend my deepest thanks to my family and my professors and colleagues for their great help in the production of this work.

*Mohamed Ibrahim Raslan Hegazy**

DEDICATION

To my family and friends

Abstract

Systemic lupus erythematosus (SLE) is a common connective tissue disease that involves almost all organ systems. Involvement of the brain is one of the most important complications of SLE. About 30–70% of SLE patients develop brain involvement, which is manifested as cerebrovascular disease, seizures, cognitive disorders, headaches, and psychosis.

The aim of this study was to investigate whether neuropsychological dysfunction in SLE was associated alterations in CBF.

Total Cerebral Blood Flow Volume (TCBFV) was assessed by measuring flow volume of the extra cranial internal carotid and vertebral arteries using Doppler Ultrasonography and neuropsychological status was assessed by the Mini-Mental State Examination (MMSE), Modified Mini-Mental State Examination (3MS), and Ceneral health Questionaire (GHQ) in 21 SLE patients subgrouped into 10 patients with Atiphpospholipid Syndrome (Group Ia) and 11 patients without Atiphospholipid Syndrome (Group Ib) and 10 healthy volunteers.

It was found that CBFV in the Left ICA was significantly lower in patients than in controls (p value=0.05). It was also found that TCBFV was significantly lower in patients with SLE diseses activity (p value=0.006). There was no significant difference between patients and controls regarding MMSE, 3MS, or GHQ. There was no significant difference between patient subgroups regarding TCBFV, MMSE, 3MS, or GHQ.

In conclusion, cerebral hypoperfusion measured by Doppler ultrasonography was detected in patients with SLE and is related to disease activity.

Key words: Cerebral Blood Flow Volume; Neuropsychiatric lupus; Cognitive dysfunction; SLE Disaese Activity Index (SLEDAI).

Table of Contents

Title	Page
LIST OF ABBREVIATIONS	I
LIST OF FIGURES	IV
LIST OF TABLES	V
INTRODUCTION AND AIM OF WORK	1
CHAPTER ONE: VASCULITIS OF THE NERVOUS SYSTEM	3
CHAPTER TWO: NEUROPSYCHIATRICLUPUS	47
CHAPTER THREE: CEREBRAL BLOOD FLOW	70
SUBJECTS AND METHODS	96
RESULTS	101
DISCUSSION	120
SUMMARY AND CONCLUSION	130
REFERENCES	133
APPENDICES	161
ARABIC SUMMARY	

List of abbreviations

aCL	Anti-cardiolipin Antibodies
ACR	American College of Rheumatology
AECA	Anti-endothelial cell antibodies
ANA	Anti-nuclear antibodies
ANCA	Anti-neutrophil cytoplasmic antibodies
anti-b2GP1	Anti-beta 2 glycoprotein 1
anti-dsDNA	Anti-double stranded DNA antibodies
anti-P	Anti-ribosomal P antibody
aPL	Antiphospholipid Syndrome
BACNS	Benign angiopathy of the CNS
c-ANCA	Circulating antineutrophil cytoplasmic
	antibody
CBF	Cerebral blood flow
CBFV	Cerebral blood flow velocity
CBV	Cerebral blood volume
CNS	Central nervous system
CSF	Cerebrospinal fluid
CSS	Churg–Strauss syndrome
CT	Computed tomography
CTA	Computed tomography angiography
CTDs	Connective tissue disorders
CVDs	Cerebrovascular disorders
CVR	Cerebrovascular resisitance
DHEA	Dehydroepiandrosterone
DPTC	Dynamic perfusion computed
	tomography
DSCPW	Dynamic susceptibility contrast
-MR	perfusion-weighted magnetic resonance
ECD	Ethyl eysteinatedimer
EEG	Electroencephalography
ELISA	Enzyme-linked immunosorbent assay
ESR	Erythrocyte sedimentation rate
GACNS	Granulomatous angiitis of the central nervous
	system
GC	Glucose consumption
HBV	Hepatitis B virus

HCV	Hepatitis C virus
HIV	Human immunodeficiency virus
HMPAO	Hexamethyl propylene amine oxime
HSP	Henoch-Schonleinpurpura
ICAM-1	Inter-Cellular Adhesion Molecule 1
γIFN-	interferon-gamma
İgA	Immunoglobulin A
IgG	Immunoglobilin G
IL-1	interleukin-1
IL-6	interleukin-6
IVIG	intravenous immunoglobulin
LA	Lupus Anticoagulant
LCV	leukocytoclasticvasculitis
MAC	Membrane attack complex
MHC	Majorhistocompatibility complex
MPA	Microscopic polyangiitis
MPO	Myeloperoxidase
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
MS	Multiple Sclerosis
MTT	Mean transit time
NCS	Nerve conduction studies
NIRS	Near-infrared spectroscopy
NPSLE	Neuropsychiatric systemic lupus
	erythematosus
OC	Oxygen consumption
OEF	Oxygen extraction fraction
PACNS	Primary angiitis of the CNS
PAN	Polyarteritis Nodosa
p-ANCA	Perinuclear antineutrophilcytoplasmic
	antibody
PCR	Polymerase chain reaction
PET	Positron emission tomography
PMN	Polymorphonuclear leukocytes
PN	Peripheral sensorimotor neuropathy
PNS	Peripheral Nervous System
PR3	Proteinase 3
RCVS	Reversible cerebral vasoconstriction
	syndrome
SLE	Systemic lupus erythematosus

SLEDAI	Systemic lupus erythematosus Disease
	Activity Index
SPECT	Single photon emission computed
	tomography
SS	Sjogren syndrome
TA	Takayasu'sarteritis
TCD	Transcranial Doppler ultrasound
αTGF-	Transforming growth factor- alpha
βTGF-	- betaTransforming growth factor
TIAs	Transient ischemic attacks
TM	Transverse myelitis
αTNF-	Tumor necrosis factor -alpha
VCAM-1	Vascular cell adhesion molecule-1
VDRL	Veneral Disease Research Laboratory
WG	Wegener's granulomatosis
XeCT	Xenon-enhanced computed
	tomography

List of figures

Figure	Title	Page
1	Drawing illustrates the preferred sites of vascular involvement by selected vasculitides	12
2	Temporal arteritis with granulomatous angiitis showing fragmentation of the elastic lamina and granulomaouts inflammation of the intima and media	21
3	Radiographic features of cerebral vasculitis	42
4	Circle of Willis	71
5	Flow-pressure curve of the cerebral circulation	73
6	Autoregulation of cerebral blood flow	77
7	Schematic representation of the transcranial Doppler ultrasound technique	91
8	Distribution of NPSLE among study patients	103

List of tables

Tables	Title	Page
1	classification of vasculitides that affect the nervous system	8
2	names and definitions of vasculitis adopted by the chapel hill consensus conference on the nomenclature of systemic vasculitis	10
3	comparison of clinical and diagnostic characteristics of reversible cerebral vasoconstriction syndromes and granulomatous angiitis of the central nervous system	17
4	laboratory evaluation of vasculitis	40
5	Neuropsychiatric syndromes associated with SLE	47
6	Environmental factors that may be relevant in the pathogenesis of SLE	55
7	Treatment of various manifestations of neuropsychiatric SLE	67
8	Brain Perfusion Imaging Techniques	85
9	Age, Duration of Illness, BMI, Blood pressure of patients and controls	101
10	Age, Duration of Illness, BMI, Blood pressure of patient subgroups	102
11	Neurological manifestations of the patient subgroups	103
12	Systemic Manifestations of Patient Subgroups	104
13	Results of 3MS in study population	105
14	Results of 3MS in patient subgroups	106

15	Comparative results according to the degree of activity assessed by SLEDAI	108
16	Comparative results according to the degree of damage assessed by SLICC	109
17	Flow velocities in extracranial vessels & IMT in study groups	110
18	Resistivity Index (RI) & Pulsatility Index (PI) values in extracranial vessels in study groups	111
19	Cerebral Blood Flow Volume in extracranial vessels & Total Cerebral Blood flow Volume in study groups	112
20	Flow velocities in extracranial vessels & IMT in patient subgroups	112
21	Resistivity Index (RI) & Pulsatility Index (PI) values in extracranial vessels in patient subgroups	113
22	Cerebral Blood Flow Volume in extracranial vessels & Total Cerebral Blood flow Volume in patient subgroups	113
23	Flow velocities in intracranial vessels in study groups	114
24	Resistivity Index (RI) & Pulsatility Index (PI) values in intracranial vessels in study groups	115
25	Flow velocities in intracranial vessels in patient subgroups groups	115
26	Resistivity Index (RI) & Pulsatility Index (PI) values in intracranial vessels inpatient subgroups groups	116
27	MRI Brain and Clinical findings in patient subgroups	117
28	Laboratory Results of Study Population	118
29	Comparison of patients according to the presence of Neuropsychiatric SLE (NPSLE)	119
30	TCBFV Correlations	119

INTRODUCTION AND AIM OF WORK

Introduction and aim of work

Introduction:

Systemic lupus erythematosus (SLE) is a chronic inflammatory multiorgan disease. It is characterized by a variety of clinical features including abnormalities of the skin, joints, lungs, heart, Kidneys, and the central nervous system (CNS). It has a variable course marked by active and inactive disease periods. The etiology of SLE is unknown, but it is believed to represent a disturbance of the immune system, leading to influence of or damage to various organs. Involvement of the brain – neuropsychiatric SLE (NPSLE) – is one of the most important manifestations, reportedly ranging from 20% to 75% of cases (McCune and Golbus 1988 ;Futrell et al.,1992).

The CNS findings vary from global to focal cerebral dysfunction (Omdal et al., 1989) and the main features are cerebrovascular disease seizures, cerebral atrophy, psychosis, headaches, cognitive abnormalities and mood disorder. Unlike many other organ manifestations, the pathophysiology underlying CNS disease is not clear (van Dam ,1991). The observation of both diffuse and focal CNS involvement in SLE has led to the hypothesis that there are several pathogenetic mechanisms in NPSLE such as microvascular damage, small vessel vasculopathy and autoantibody mediated neuronal cell injury (Devinsky et al.,1988; Hanly et al.,1992). It has been proposed that about two-thirds of neurological manifestations in SLE are not related to the disease itself, but result from associated

causes, such as drugs, infection, and hypertensive and metabolic complications (Kaell et al., 1986

Transcranial color Doppler sonography (TCCD) is a useful tool for intracranial investigation. It provides direct sonographic imaging of intracranial vessels and brain parenchyma. It is also a noninvasive, reproducible and bedside mobile device for evaluating the cerebral hemodynamics, including blood flow direction, flow velocities, and other abnormal vascular lesions (Lin et al., 1995)

Neuropsychological assessment is another method of evaluating brain function (Lezak , 1995 ;Reitan and Wolfson 1993). Neuropsychological testing evaluates the functional capacity of the human brain. Assessing cognitive function has been proposed as a sensitive tool for investigating NPSLE and cognitive dysfunction has been reported in a high proportion of SLE patients (Denburg et al., 1987; Hanly et al., 1992; Kozora et al., 1998)

Aim of the work

The purpose of this study was to screen cerebral perfusion by establishing Total Cerebral Blood Flow Volume (TCBFV) by using Doppler Ultrasonography and determining whether a relationship exists between cerebral hypoperfusion, cognitive dysfunction, cumulative tissue damage and the clinical activity of SLE.