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Abstract

Cataract surgery has undergone remarkable growth in recent decades
with the development of phacoemulsification machines in the late
1960s and foldable intraocular lenses (IOLs) in the late 1980s. These
developments made cataract surgery through a micro incision a
reality.

The trend in modern cataract surgery is to minimize surgical trauma.
Micro coaxial phacoemulsification was created to try and insure a
safe, more efficient cataract surgery. Micro coaxial
phacoemulsification involves emulsification and aspiration of the
cataractous lens using the same coaxial setup as with conventional
phaco, but through a smaller wound, typically ranging in size from

1.6 to 2.4 mm.
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Introduction



Phacoemulsification cataract surgery has come a long way since Dr
Charles Kelman’s famous epiphany in the dentist’s chair in the early
1960’s. The idea that ultrasonic energy could be used to break up
cataractous lenses was considered completely outrageous at the time, but
of course now it has become the standard approach in the western world.
In the initial procedure Dr Kelman used a four pound ultrasound
handpiece, in a surgery that took four hours including 41 minutes of
ultrasound time, resulting in endophthalmitis and phthisis in a blind

patient. (Henahan . 2007)

Complications that haunt the phaco surgeon are chamber instability,
prolonged ultrasound time resulting in endothelial cell loss and corneal
edema, thermal wound contracture and poorer uncorrected visual acuity

due to incision induced astigmatism. (Emery, Wilhelmus et al. 1978)

Many of the advantages of phacoemulsification are related to small
incisions. Small incisions reduce tissue damage and postoperative
inflammation and pain. They are also safer and provide faster and more
stable postoperative visual and physical rehabilitation. Today, there is a
clear trend toward smaller incisions and discussion that because of the
small learning curve, better fluidics, same instrumentation, and same IOL
inserted through a 2.0mm incision, coaxial microphacoemulsification is

the ideal surgery technique. (Crema, Walsh et al. 2007)

A common goal has been to minimize incision size with the potential
benefits of reduced surgically induced astigmatism, shorter recovery time,

and less propensity for wound leakage. (Lyle. & Jin 2006)



Torsional phacoemulsification using an angled tip required less surgeon-
generated tip travel and less time, suggesting that nuclear material may be
more efficiently approximated to and aspirated through the tip aperture
throughout the phacoemulsification process. Shorter cumulative tip travel
and less procedure time imply increased nuclear followability, fewer
reacquisition movements, and increased phacoemulsification efficiency

and safety. (Davison, 2008)

The phacodynamic advantages of torsional ultrasound is what optimized
the micro-coaxial procedure. With the increased cutting efficiency,
reduced repulsion, and favorable thermal profile of torsional ultrasound
combined with optimal chamber stability, It have been able to reduce the
fluidics parameters. The use of these conservative levels reduces
intraocular turbulence and minimizes balanced salt solution use while
allowing the surgeon to maintain excellent intraocular control and

efficiency in a micro-coaxial environment. (Raviv, 2008)

When phaco is performed using a torsional handpiece with a cataract
removal system, measurable intraoperative and clinical benefits are
achieved operating through a 2.2mm microcoaxial incision compared

with a standard 2.8mm coaxial technique. (Kim, 2008)



Aim of the work:

To review the literature and compare micro-coaxial phacoemulsification
to conventional phacoemulsification in terms of average phaco time,
cumulative dissipated energy, fluidics, thermal wound contracture, free
radical production, post operative visual rehabilitation time,
uncorrected/best corrected visual acuity, incision architecture,

astigmatism, endothelial cell loss and corneal edema.



