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Abstract 

Cataract surgery has undergone remarkable growth in recent decades 

with the development of phacoemulsification machines in the late 

1960s and foldable intraocular lenses (IOLs) in the late 1980s. These 

developments made cataract surgery through a micro incision a 

reality.   

The trend in modern cataract surgery is to minimize surgical trauma.  

Micro coaxial phacoemulsification was created to try and insure a 

safe, more efficient cataract surgery. Micro coaxial 

phacoemulsification involves emulsification and aspiration of the 

cataractous lens using the same coaxial setup as with conventional 

phaco, but through a smaller wound, typically ranging in size from 

1.6 to 2.4 mm. 
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Phacoemulsification cataract surgery has come a long way since Dr 

Charles Kelman’s famous epiphany in the dentist’s chair in the early 

1960’s. The idea that ultrasonic energy could be used to break up 

cataractous lenses was considered completely outrageous at the time, but 

of course now it has become the standard approach in the western world. 

In the initial procedure Dr Kelman used a four pound ultrasound 

handpiece, in a surgery that took four hours including 41 minutes of 

ultrasound time, resulting in endophthalmitis and phthisis in a blind 

patient. (Henahan . 2007) 

  

Complications that haunt the phaco surgeon are chamber instability, 

prolonged ultrasound time resulting in endothelial cell loss and corneal 

edema, thermal wound contracture and poorer uncorrected visual acuity 

due to incision induced astigmatism. (Emery, Wilhelmus et al. 1978)  

 

Many of the advantages of phacoemulsification are related to small 

incisions. Small incisions reduce tissue damage and postoperative 

inflammation and pain. They are also safer and provide faster and more 

stable postoperative visual and physical rehabilitation.  Today, there is a 

clear trend toward smaller incisions and discussion that because of the 

small learning curve, better fluidics, same instrumentation, and same IOL 

inserted through a 2.0mm incision, coaxial microphacoemulsification is 

the ideal surgery technique. (Crema, Walsh et al. 2007) 

A common goal has been to minimize incision size with the potential 

benefits of reduced surgically induced astigmatism, shorter recovery time, 

and less propensity for wound leakage. (Lyle. & Jin 2006) 



 

Torsional phacoemulsification using an angled tip required less surgeon-

generated tip travel and less time, suggesting that nuclear material may be 

more efficiently approximated to and aspirated through the tip aperture 

throughout the phacoemulsification process. Shorter cumulative tip travel 

and less procedure time imply increased nuclear followability, fewer 

reacquisition movements, and increased phacoemulsification efficiency 

and safety.  (Davison, 2008) 

 

The phacodynamic advantages of torsional ultrasound is what optimized 

the micro-coaxial procedure. With the increased cutting efficiency, 

reduced repulsion, and favorable thermal profile of torsional ultrasound 

combined with optimal chamber stability, It have been able to reduce the 

fluidics parameters. The use of these conservative levels reduces 

intraocular turbulence and minimizes balanced salt solution use while 

allowing the surgeon to maintain excellent intraocular control and 

efficiency in a micro-coaxial environment.  (Raviv, 2008) 

 

When phaco is performed using a torsional handpiece with a cataract 

removal system, measurable intraoperative and clinical benefits are 

achieved operating through a 2.2mm microcoaxial incision compared 

with a standard 2.8mm coaxial technique. (Kim, 2008) 

 

 

 



Aim of the work: 

 

 

To review the literature and compare micro-coaxial phacoemulsification 

to conventional phacoemulsification in terms of average phaco time, 

cumulative dissipated energy, fluidics, thermal wound contracture, free 

radical production, post operative visual rehabilitation time, 

uncorrected/best corrected visual acuity, incision architecture, 

astigmatism, endothelial cell loss and corneal edema. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


