Bond Performance and Nanoleakage of Resin/Dentin Interface under Different Intrapulpal Pressures

Thesis

Submitted to the Faculty of Oral and Dental Medicine

Cairo University

In Partial Fulfillment of the Requirements for Doctor Degree in Operative Dentistry

By Yasser Maher Mostafa El-Bouhi

B.D.S., M.D.S. - Alexandria University

رِسْمِ اللَّهِ الرَّهْمَنِ الرَّحِيمِ

"إِنَّ اللَّهَ وَمَلَاذِكَتَهُ يُصَلُّمِنَ عَلَى النَّدِيِّ يَا
أَيُّهَا الَّذِينَ آمَنُوا صَلُّوا عَلَيْهِ وَسَلِّمُوا تَسْلِيماً

سورة المُواجِ: الَّية 56

Supervisors

Prof. Dr. Fayez Mohammed Hassan

Professor of Operative Dentistry
Faculty of Oral and Dental Medicine
Cairo University

Prof. Dr. Mona Ismail Riad

Professor of Operative Dentistry
Faculty of Oral and Dental Medicine
Cairo University

Dr. Enas Hussein Mobarak

Assistant Professor of Operative Dentistry Faculty of Oral and Dental Medicine Cairo University

Dedicated to:

My magnificent parents, my blessed ever supporting mother and the soul of my father who started this effort with me but could not wait to see its end. I wish you were here to witness it. No words can reward both of you.

My family, my dear loving wife Hala, to my three pearls Ziad, Rola and Yasmin and to my brother Wael for their endless tolerance and support.

My mentor supervisors for their ample knowledge and expertise.

Acknowledgement

First of all, I would like to express my gratefulness to **ALLAH** whose blessing on me can not be counted and for giving me the faith and patience to accomplish this study.

The work leading to this thesis could not be achieved without the guidance, assistance and encouragement from a number of people. I begin by thanking my supervisors; Words are not enough to express my gratitude to all of them, in particular:

I would like to express my sincere and grateful appreciation and indebtedness to **Prof. Dr. Fayez Mohammed Hassan,** Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, for his valuable guidance, distinctive kindness and unforgettable patience. I am so grateful to him and I would like to deeply express my gratitude for his wise guidance and fruitful suggestions throughout this study.

I owe a special debt of gratitude, with great appreciation and admiration to **Prof. Dr. Mona Ismail Riad,** Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, for her wise guidance, fruitful ideas and tremendous effort and giving me the confidence to conduct the research projects included in this thesis. She kept giving me unlimited help and continuous insistence on perfection, without her constant supervision, this thesis could not have achieved its present form. I know that words are not enough to thank her for her unremitting support, patience and kindness.

I gratefully acknowledge **Dr. Enas Hussein Mobarak**, Assistant Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, for her effort and help.

I feel very grateful to **Prof. Dr. Inas Mohy El-Din** and to staff members of Operative Dentistry Department, Faculty of oral and dental medicine, Cairo University for facilities and help being offered during this study.

I would like to express my sincere appreciation to **Dr. Ahmad Amer and Engineer Tamer Mohammed Youssef**, Research and Conservation Center of Egyptian Antiques, for their kindness and support.

I gratefully acknowledge **my friends and colleagues** for their indispensible back up, who constantly contributes to my tolerance in confronting the challenges of life.

Finally, a special mention goes to **my family**; their love, sacrifice and understanding have encouraged me to proceed in this work; to them I owe the greatest debt of gratitude.

Thank you all

LIST OF CONTENTS

	Page
LIST OF TABLES	I
LIST OF FIGURES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF THE STUDY	59
MATERIALS AND METHODS	60
RESULTS	85
DISCUSSION	127
SUMMARY AND CONCLUSIONS	151
REFERENCES	155
ARABIC SUMMARY	175

LIST OF TABLES

	Item	Page
Table (1):	Materials' composition, manufacturers and batch number.	61
Table (2):	numberVariables of the study	65
` '	Interaction of variables	
Table (3):		65
Table (4):	Summary of repeated measures ANOVA results of	05
m 11 (5)	microtensile bond strength testing	85
Table (5):	The effect of study variables on the mean microtensile	0.6
T.1. (6)	bond strength in MPa and standard deviation	86
Table (6):	The effect of intrapulpal pressure variation on the	
	collective mean microtensile bond strength in MPa and	
	standard deviation	87
Table (7):	The effect of dentin depth variation on the collective	
	mean microtensile bond strength in MPa and standard	
	deviation	88
Table (8):	The effect of adhesive system on the mean microtensile	
	bond strength in MPa and standard deviation	89
Table (9):	The effect of aging time variation on the collective	
24626 (5)1	mean microtensile bond strength in MPa and standard	
	deviation	90
Table (10):	Mean microtensile bond strength in MPa and standard	70
Table (10).	deviation of all tested groups	91
Tabla (11).		91
Table (11):	Interaction of variables of mean microtensile bond	02
T 11 (10)	strength values	92
Table (12):	Ranking of the different groups according to their	
	mean microtensile bond strength values	95
Table (13):	Summary of repeated measures ANOVA results of	
	nanoleakage evaluation	96
Table (14):	The effect of study vaiables on the mean silver	
	deposition and standard deviation	97
Table (15):	The effect of intrapulpal pressure variation on the	
, ,	collective mean silver deposition and standard	
	deviation	98
Table (16):	The effect of dentin depth variation on the collective	
_ = ===================================	mean silver deposition in MPa and standard deviation	99

Table (17):	The effect of adhesive system on the mean silver	
	deposition and standard deviation	100
Table (18):	The effect of aging time variation on the collective mean silver deposition and standard deviation regardless of the other variables	101
T 11 (10)		101
Table (19):	Mean silver deposition values and standard deviation of all groups	102
Table (20):	Interaction of variables of mean silver deposition values	103
Table (21):	Ranking of the groups according to their mean silver	
,	deposition values	106
Table (22):	Correlation coefficient analysis values between microtensile bond strength and nanoleakage for all	
	variables	107

LIST OF FIGURES

	Item	Pag
Fig. (1):	Adper Single Bond 2 adhesive system (Bonding agent and Scotchbond etching gel)	62
Fig. (2):	Prime & Bond NT adhesive system (Bonding agent and Conditioner 36 etching gel)	62
Fig. (3):	Filtek Supreme XT universal restorative resin composite.	62
Fig. (4):	Apical view of a tooth showing the access to the pulp chamber at the furcation direction	75
Fig. (5):	Diagram illustrating the placement of the guiding grooves on proximal surfaces of the tooth to expose dentin and make proximal windows before the reduction of the proximal surfaces	75
Fig. (6):	Diagram illustrating dentin surface preparation for occlusal leveling in two planes; superficial and deep	75
Fig. (7):	Two planes were produced on the occlusal surface (superficial and deep dentin)	76
Fig. (8):	The incubation storage box closed and the temperature control unit showing the water bath temperature	76
Fig. (9):	The incubation storage box open and the teeth mounted on the pipeline system during the bonding and composite buildup procedures	76
Fig. (10):	The temperature control unit	77
Fig. (11):	A basic manometer was formed by fixing the two burettes to a ruler	77
Fig. (12):	Pipeline unit with the cupper teethed openings	77
Fig. (13):	The tooth attached to double hose	78
Fig. (14):	The tooth secured to the opening of the pipeline while plugging stoppers were used for blocking vacant outlets	78
Fig. (15):	A tooth with composite buildup after removal from the storage container and before cutting	78
Fig. (16):	The cutting machine with diamond discs mounted	79
Fig. (17):	Diamond discs mounted with separating wheel spacers.	79
Fig. (18):	Diagram summarizing the steps of tooth preparation	

	until the production of beam sticks specimens
Fig. (19):	The tooth after cutting into beam sticks and before
0 \ /	separating the beams
Fig. (20):	A beam after separation consisting of a composite and
0 \ /	dentin parts
Fig. (21):	Beam width and breadth measurement before µTBS
0 \ /	testing by means of a pincer Iwanson thickness gauge
Fig. (22):	Diagram showing the components of the attachment jig
Fig. (23):	The attachment jig face showing a glued beam in the
0 \ /	orientation groove during testing
Fig. (24):	Rear surface of the attachment jig
Fig. (25):	Lloyd universal testing machine
Fig. (26):	The jig mounted on the testing machine with a beam
0 \ /	glued in place during application of stress tension
Fig. (27):	The beam just after being stressed to failure
Fig. (28):	Waxed beams before immersion in the ammoniacal
8 (/	silver nitrate solution
Fig. (29):	The beams in a small container before adding the
8 ()	immersion tracing solution
Fig. (30):	Storage containers: The small containers were wrapped
0 \ /	with aluminum foil and put in light-proof photo-film
	container
Fig. (31):	Beams specimens prepared and ready for nanoleakage
	evaluation
Fig. (32):	The Environmental Scanning Electron Microscope and
8 (/	the EDAX
Fig. (33):	Bar chart representing the effect of intrapulpal pressure
0 \ /	variation on the collective mean microtensile bond
	strength in MPa
Fig. (34):	Bar chart representing the effect of dentin depth
0 \ /	variation on the collective mean microtensile bond
	strength in MPa
Fig. (35):	Bar chart representing the effect of the adhesive
8 \ /	systems tested on the mean microtensile bond strength
	in MPa
Fig. (36):	Bar chart representing the effect of time variation on
G (= -/*	the collective mean microtensile bond strength in MPa.
Fig. (37):	

	results of all groups	91
Fig. (38):	Bar chart representing the effect of intrapulpal pressure	
8 ()	variation on the collective mean silver deposition	98
Fig. (39):	Bar chart representing the effect of dentin depth	
9 . ().	variation on the collective mean silver deposition	99
Fig. (40):	Bar chart representing the effect of the adhesive system	
8• ()•	on the mean silver deposition values	100
Fig. (41):	Bar chart representing the effect of time variation on	
1 18. (11).	the collective mean silver deposition	101
Fig. (42):	Bar chart representing the silver deposition results of	
- 1 5 • (1 -)•	all groups	102
Fig. (43):	ESEM Photomicrograph, element analysis table and	102
116. (40).	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 15 cm H ₂ O IPP at 24 h aging	115
Fig. (44):	ESEM Photomicrograph, element analysis table and	11,
11g. (++).	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 15 cm H_2O IPP at 3 month	
	aging	115
Fig. (45):	ESEM Photomicrograph, element analysis table and	11,
11g. (40).	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 15 cm H_2O IPP at 9 month	
	aging	110
Fig. (46):	ESEM Photomicrograph, element analysis table and	11(
11g. (40).	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 15 cm H ₂	116
Fig. (47):	ESEM Photomicrograph, element analysis table and	11(
11g. (47).	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 15 cm H ₂ O IPP at 3 month aging	117
Fig. (48):	ESEM Photomicrograph, element analysis table and	11
11g. (40).	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 15 cm H ₂ O IPP at 9 month aging	11′
Fig. (49):	ESEM Photomicrograph, element analysis table and	11.
11g. (47).	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 36 cm H ₂ O IPP at 24 hours	
	aging	118
Fig. (50):	8 8	110
11g. (30):	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 36 cm H_2O IPP at 3 month	
	superficial dentili with 30 cm H ₂ O iff at 3 month	

Fig. (51):	aging ESEM Photomicrograph, element analysis table and	118
rig. (31):	EDAX histogram for Adper Single Bond 2 at	
	superficial dentin with 36 cm H ₂ O IPP at 9 month	
	aging	119
Fig. (52):	ESEM Photomicrograph, element analysis table and	11/
8' ()'	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 36 cm H ₂ O IPP at 24 hours aging	119
Fig. (53):	ESEM Photomicrograph, element analysis table and	
8 ()	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 36 cm H ₂ O IPP at 3 month aging	120
Fig. (54):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Adper Single Bond 2 at deep	
	dentin with 36 cm H ₂ O IPP at 9 month aging	120
Fig. (55):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at superficial	
	dentin with 15 cm H ₂ O IPP at 24 hours aging	121
Fig. (56):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at superficial	
	dentin with 15 cm H ₂ O IPP at 3 month aging	121
Fig. (57):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at superficial	100
F: (50)	dentin with 15 cm H ₂ O IPP at 9 month aging	122
Fig. (58):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Orline at 25 dnount Tagingeep.dentin	100
Fig. (50).	with 15 cm H ₂	122
Fig. (59):	ESEM Photomicrograph, element analysis table and EDAX histogram for Prime & Bond NT at deep dentin	
	with 15 cm H ₂ O IPP at 3 month aging	123
Fig. (60):	ESEM Photomicrograph, element analysis table and	123
11g. (00).	EDAX histogram for Prime & Bond NT at deep dentin	
	with 15 cm H ₂ O IPP at 9 month aging	123
Fig. (61):	ESEM Photomicrograph, element analysis table and	
8 (3-)*	EDAX histogram for Prime & Bond NT at superficial	
	dentin with 36 cm H ₂ O IPP at 24 hours aging	124
Fig. (62):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at superficial	
	dentin with 36 cm H ₂ O IPP at 3 month aging	124

Fig. (63):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at superficial	
	dentin with 36 cm H ₂ O IPP at 9 month aging	125
Fig. (64):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at deep dentin	
	with 36 cm H ₂ O IPP at 24 hours aging	125
Fig. (65):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at deep dentin	
	with 36 cm H ₂ O IPP at 3 month aging	126
Fig. (66):	ESEM Photomicrograph, element analysis table and	
	EDAX histogram for Prime & Bond NT at deep dentin	
	with 36 cm H ₂ O IPP at 9 month aging	126

O IPP at 24 hours aging.....

Introduction

The advent of adhesives has caused a dramatic change in restorative dentistry and the use of direct resin-based composite materials has become an active part of contemporary operative dentistry.

As dentin is made thinner during cavity preparations, the tubules become shorter and their hydraulic conductance increases, together with, the complete removal of the smear layer and the smear plugs with the acidic conditioners used in etch-and-rinse adhesives allow outflow of dentinal fluid into dentinal floor due to the physiological intrapulpal pressure. Furthermore, due to the effect of caries process, cavity preparation, acid etching and material cytotoxicity the intrapulpal pressure might increase leading to increased fluid outflow (*Murray et al 2001*). This fluid wets the dentin surface and can affect adhesion of resin to the dentin by diluting the bonding agent and blocking the microporosities into which the resin otherwise would have penetrated (*Pereira et al.*, 1999).

Wet bonding creates thicker hybrid layer due to more resin uptake into etched surfaces than did dry bonding. However, the ability of acetone or ethanol to "chase" water out of the wet collagen fibril meshwork is often incomplete; leading to the formation of resin globules and poor resin tag formation (*Gwinnett et al.*, 1993).

Following acid-etching and water rinsing, the mineral phase of dentin is removed and all that is left of the original dentin is the collagenous matrix. The solubilized mineral phase of dentin has been extracted, and replaced by resin during resin-infiltration. The new surface is neither dentin nor resin, but was a hybrid of both. The hybrid layer is very strong and tough when properly formed, and affords enormous micromechanical retention for resin composites (Nakabayashi, 1982 and Nakabayashi and Pashley, 1998).

The durability and stability of resin bonded interfaces created by some bonding systems remain questionable. Immediate dentin bond strength values