

APRI score(Aspartate Transaminase/Platelet count Ratio Index) as a predictive value for different grades of Liver Cirrhosis

 $\mathbf{B}\mathbf{y}$

Reham Ekram Hussein

M.B.,B.Ch.

Thesis

Submitted for fulfillment of Master Degree in

Internal Medicine

Under Supervision of

Prof. Dr. SAMEH MOHAMED GHALY

Professor of internal Medicine

Gastroenterology and Hepatology department

Faculty of Medicine - Ain Shams University

Prof. Dr.KADRY MOHAMED EL-SAID

Assistant Professor of Internal Medicine

Gastroenterology and Hepatology Department

Faculty Of Medicine - Ain Shams University

Assist, Prof. Zainab Ahmed Ali-Eldin

Lecturer of Internal Medicine

Gastroenterology and Hepatology Department

Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2013

AKNOWLEDGMENT

Thanks to GOD

Who help me to finish this work

I wish to express my deepest gratitude and sincere appreciation to:

Prof. Dr. SAMEH MOHAMED GHALY

Professor of Internal Medicine Gastroenterology and Hepatology Ain Shams University for his skilful supervision and helpful guidance.

I owe my sincere gratitude to

Prof. Dr. KADRY MOHAMED EL-SAID

Professor of Internal Medicine Gastroenterology and Hepatology Ain Shams University for his helpful supervision and guidance.

I owe my sincere gratitude to

Assis. Prof. Zainab Ahmed Ali-Eldin

Assistant Professor of Internal Medicine Gastroenterology and Hepatology Ain Shams University for her helpful supervision and encouragement.

Also I would like to thank my family and my friends who support me all the time.

Table of contents

Items	Page
Content	I
List of Abbreviations	II
List of Tables	IV
List of Figures	VI
• Introduction	i
Aim of the work	vi
Review of Literature	1-77
Chapter1: Liver Cirrhosis	1
Chapter2: Diagnosis of Cirrhosis	55
Chapter3 : APRI Score	72
Patients and Method	78
• Results	83
• Discussion	100
Conclusion and Recommendation	113
• Summary	115
References	119
Arabic Summery	162

List of Abbreviations

AAR	ALT/AST Ratio
ALD	Alcoholic Liver Disease
ALP	Alkaline Phosphatase
ALT	Alanine Transaminase
AMA	Anti-Mitochondrial Antibody
ANA	Anti-Nuclear Antibody
AKI	Acute Kidney Injury
APRI	AST/Platelet count Ratio Index
ASMA	Anti-Smooth Muscle Antibody
AST	Aspartate Transaminase
BMI	Body Mass Index
СНВ	Chronic Hepatitis B
СНС	Chronic Hepatitis C
CLD	Chronic Liver Disease
CPT	Child-Pugh-Turcotte
ECM	Extra Cellular Matrix
ELF	Enhanced Liver Fibrosis score
EVL	Endoscopic Variceal Ligation
GGT	Gamma Glutamyl Transferase
GOV	Gastro-Osophageal Varices
HBcAb	Hepatitis B Core Antibody
HBsAg	Hepatitis B Surface Antigen
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus

HIV	Human Immune Deficiency Virus
HSC	Hepatic Stellate Cell
IGV	Isolated Gastric Varices
INR	International Normalization Ratio
LC	Liver Cirrhosis
LKM	Liver Kidney Microsomal Antibody
MCV	Mean Corpuscular Volume
MELD	Model for End stage Liver Disease
MHE	Minimal Hepatic Encephalopathy
MMP	Matrix Metalloproteinase
NAFLD	Non Alcoholic Fatty Liver Disease
NASH	Non Alcoholic Steatohepatitis
PCP	Primary Care Physician
PMN	Polymorphonuclear Leucocytes
PPV	Positive Predictive Value
SBP	Spontaneous Bacterial Peritonitis
Se	Sensitivity
SNP	Single Nucleotide Polymorphism
Sp	Specificity
TIMPs	Tissue Inhibitors of Metalloproteinases
TIPS	Transjugular Intrahepatic Portosystemic
	Shunt

List of Tables

Chapter 1:

Item	Table	Page
Table 1	Diagnostic tests, suggested etiology, and current	13
	treatment for the most frequent forms of liver	
	cirrhosis in adult patients.	
Table 2	Etiology of the common clinical finding of	14
	cirrhosis.	
Table 3	Child-Pugh scoring system for liver cirrhosis	17
Table 4	Drugs for acute esophageal variceal bleeding	22
Table 5	West-Haven criteria for hepatic	41
	encephalopathy	

Chapter 2:

Item	Table	Page
Table 6	Laboratory Findings in Liver Cirrhosis	57
Table 7	Ultrasonographic parameters constituting cirrhosis score	59
Table 8	Pros and Cons of liver biopsy in staging of hepatic fibrosis	64
Table 9	Single serum non-invasive markers for liver fibrosis	66
Table 10	Combinations of serum parameters for non-	67

invasive diagnosis of liver fibrosis and liver	
cirrhosis	

Tables of Results:

Item	Table	Page
Table 1	Laboratory Data Of Patient with chronic liver	84
	disease (control)	
Table 2	Laboratory Data Of Patient with liver	85
	cirrhosis (cases)	
Table 3	Univariate Analysis of Variables Associated	87
	With Chronic liver disease (control) and Patient	
	with Cirrhosis(cases)	
Table 4	The mean value of APRI In Patient with liver	88
	cirrhosis	
Table 5	:Ability of APRI Score to discriminate different	89
	Child Groups	
Table 6	APRI Score Correlations with parameters of	93
	Chronic liver disease	
Table 7	APRI Score Correlations with parameters of	95
	Liver Cirrhosis	
Table 8	APRI Score correlation with occurrence of	96
	Encephalopathy	
Table 9	APRI Score correlation with occurrence of	97
	Ascites	

List of Figures

Figures of Review:

Chapter	Figure	Title	Page
Chapter 1	Figure	Vascular and architectural alterations in	8
	1	cirrhosis	
	E:	T	10
	Figure	Initiation and maintenance of fibrogenesis	10
	2		
Chapter 3	Figure	The SAFE-biopsy algorithm for significant	76
	3	fibrosis	
	Figure	The SAFE-biopsy algorithm for cirrhosis	77
	4		

Figures of Results:

	Figure	ROC curve analysis showing the diagnostic	90
	1	performance of APRI Score for	
		discriminating patients with Child C from	
		those without	
	Figure	ROC curve analysis showing the diagnostic	91
	2	performance of APRI Score for	
		discriminating patients with Child B from	
Results		those with A	
	Figure	ROC curve analysis showing the diagnostic	98
	3	performance of APRI Score for	
		discriminating patients with Encephalopathy	
		from those without	
	Figure	ROC curve analysis showing the diagnostic	99
	4	performance of APRI Score for	
		discriminating patients with Ascites from	
		those without	

Introduction

Cirrhosis is "A chronic liver disease of highly various etiology characterized by inflammation, degeneration, and regeneration in differing proportions; pathologic hallmark is formation of microscopic or macroscopic nodules separated by bands of fibrous tissue. Progressive liver fibrosis is the main cause of organ failure in chronic liver diseases of any etiology. Advanced liver fibrosis results in cirrhosis that can in turn lead to liver failure, portal hypertension and hepatocellular carcinoma (*Bataller et al.*, 2005)&(*Brenner et al.*, 2009).

Early detection of fibrosis would allow for initiation of anti-fibrotic therapies capable of halting and even reversing this process. This would in turn prevent progression to hepatic cirrhosis, and the morbidity and mortality this condition entails(*Iredale et al.*, 2008).

As regard causes of liver cirrhosis:

Cirrhosis is increasing in prevalence due to the epidemics of hepatitis C and obesity and the associated fatty liver (*Russo et al.*, 2004). Alcohol use/abuse is increasing in many countries, in part due to the global recession (*Burk*, 2010). Many patients with cirrhosis at this time have two or even all three of the above insults speeding liver damage and scarring.

Egypt has a very high prevalence of HCV and a high morbidity and mortality from chronic liver disease, cirrhosis, and hepatocellular carcinoma. Approximately 20% of Egyptian blood donors are anti-HCV positive. Egypt has higher rates of HCV than neighboring countries as well as other countries in the world with comparable socioeconomic conditions and hygienic standards for invasive medical, dental, or paramedical procedures (*Lemon & Brown*, 1995).

The severity of cirrhosis is commonly classified with the Child-Pugh score. This score uses bilirubin, albumin, international normalization ratio (INR), presence and severity of ascites and encephalopathy to classify patients in class A, B or C; class A has a favorable prognosis, while class C is at high risk of death. It was devised in 1964 by Child and Turcotte and modified in 1973 by Pugh (*Pugh et al.*, 1973).

APRI score is reliable non invasive method for the diagnosis of cirrhosis in patients with chronic liver diseases of various causes, and are also prognostic indicators for the occurrence of severe complications in cirrhotic patients (*Lippincott et al.*, 2010).

In 2003 Wai et al. published a study in which they validated the index known as APRI Score that establishes the relationship between serum aspartate aminotransferase levels and platelet count. The parameters are simple, inexpensive and available in the remotest locations (*Wai et al.*, 2003).

Aim of the work

To assess the diagnostic ability of the APRI score for prediction of different grades of liver cirrhosis.

Liver Cirrhosis

Cirrhosis represents the final common histologic pathway for a wide variety of chronic liver diseases. The term cirrhosis was first introduced by Laennec in 1826. It is derived from the Greek term *scirrhus* and refers to the orange or tawny surface of the liver seen at autopsy. Cirrhosis is defined histologically as a diffuse process in which the normal anatomical lobules are replaced by architecturally abnormal nodules separated by fibrous tissue. Progressive histological stages have been defined in the process leading to the development of cirrhosis (*Anthony et al.*, 2008).

Although cirrhosis is a pathological concept, the diagnosis of this entity is frequently based on clinical criteria that mainly reflect the consequences of increased portal pressure. Once the diagnosis of liver cirrhosis is performed, the time to reach a clinical situation of end-stage liver disease and a need for liver transplantation might be quite long. In this process, patients progress from a compensated phase with no clinical complications to a decompensated phase, in which patients present the main clinical events in liver cirrhosis: variceal bleeding, ascites, encephalopathy, and hepatocellular carcinoma (Salvador & Joan, 2011).