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Digital Signal Processing (DSP) is one of the fastestgrowing
techniques in the electronics industry. It is used in a wide range of
application fields such as, telecommunications, data communications,
image enhancement and processing, video signals, digital TV
broadcasting, and voice synthesis and recognition. Field Programmable
Gate Array (FPGA) offers good solution for addressing the needsof high-

performance DSP systems.

The focus of this thesis is on one of the basic DSP functions,
namely filtering signals to remove unwanted frequency bands. Multirate
Digital Filters (MDFs) are the main theme here. Theory and
implementation of MDF, as a special class of digital filters, will be

discussed.

Multirate digital filters represent a class of digital filters having a
number of attractive features like, low requirements for the coefficient
word lengths, significant saving in computation and storage requirements

results in a significant reduction in its dynamic power consumption.

This thesis introduces an efficient FPGA realization of a multirate
decimation filter with narrow pass-band and narrow transition band to
reduce the frequency sample rate by factor of 64 for noise thermometer
applications. The proposed multiratedecimation filter is composed of
three stages; the first stage is a Cascaded Integrator Comb (CIC)
decimation filter, the second stage is a two-coefficient Half-Band (HB)

filter and the last stage is a sharper transition HB filter.
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The frequency responses of individual stages as well as the overall
filter response have been demonstrated with full simulation using
MATLAB. The design and implementation of the proposedMDF on
FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware
Description Language (VHDL), has been introduced. The implementation
areas of the proposed filter stages are compared. Using CIC-HB
technique saves 18% of the design area, compared to using six stages HB

decimation filters.
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