

Multirate Digital Filters Based on FPGA and Its Applications

A Thesis
Submitted inPartialFulfillment of the
Requirements for the Degree of M.Sc. inElectrical Engineering

By

Eng. Ramy Mohamed Abdel RaoufSharaf El-Din

Under Supervision of

Prof. Dr. Ahmad S. S. Al-Kabbani

Professor of Electronic Engineering Al Azhar University

Prof. Dr. Mohammad Ibrahim Youssef

Professor of Communication Engineering Al Azhar University

Prof. Dr. Mahmoud AlyAshour

Professor of Electronic Engineering Atomic Energy Authority

AL-AZHAR UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL ENGINEERING DEPARTMENT

Multirate Digital Filters Based on FPGA and Its Applications

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of M.Sc. in Electrical Engineering

By

Eng. Ramy Mohamed Abdel Raouf Sharaf El-Din

Demonstrator at the National Center for Radiation Research and technology, Atomic Energy Authority.

Approved by the examining committee

Prof. Dr. Fouad Abdel Menam Saad Nuclear Materials Authority	()	
Prof. Dr. Karm Amen Aly Sharshar Atomic Energy Authority	()	
Prof. Dr. Ahmad Safwat Sadek El kabany Faculty of Engineering – Al-Azhar University	()	
Prof. Dr. Mohammad Ibrahim Youssef Faculty of Engineering – Al-Azhar University	()	
Prof. Dr. Mahmoud Aly Ashour Atomic Energy Authority	()	

ACKNOWLEDGMENT

Thanks forever for ALLAH who allowed and helped me to accomplish this work.

I would like to express my deepest appreciation and thanks to my thesis advisors; Prof. Dr. Ahmad S. Al-Kabbani, Prof. Dr. Mohamed I. Youssef, and Prof. Dr. Mahmoud A. Ashour, for their endless supports, advices, caring, and also fatherhood I always found during the studying years. They were always pushing me to do the best. Their valuable advices and supports have enlightened the main contributions of this thesis.

Special thanks to Prof. Dr. Hassan Saleh, Prof. Dr. Ahmed Madian, Dr. Amany Arafaand other staff of the Radiation Engineering Department, NCRRT - Atomic Energy Authority for their endless help. They were always very patient, and doing all their effort to support me with their experiences.

My grateful Thanks to Prof. Dr. Mohammed Zahra, Eng. Usama Abdel Fattah and other staff of the Electrical Engineering Department, Faculty of Engineering, Al-Azhar University for their great efforts during the searching period.

Special thanks to my wife for her patience. I can say that without her caring and endless love I would never do anything good in my work.

Finally, my gratitude to my family always remains. Their support and prayers are what I need most.

ABSTRACT

Digital Signal Processing (DSP) is one of the fastestgrowing techniques in the electronics industry. It is used in a wide range of application fields such as, telecommunications, data communications, image enhancement and processing, video signals, digital TV broadcasting, and voice synthesis and recognition. Field Programmable Gate Array (FPGA) offers good solution for addressing the needsof high-performance DSP systems.

The focus of this thesis is on one of the basic DSP functions, namely filtering signals to remove unwanted frequency bands. Multirate Digital Filters (MDFs) are the main theme here. Theory and implementation of MDF, as a special class of digital filters, will be discussed.

Multirate digital filters represent a class of digital filters having a number of attractive features like, low requirements for the coefficient word lengths, significant saving in computation and storage requirements results in a significant reduction in its dynamic power consumption.

This thesis introduces an efficient FPGA realization of a multirate decimation filter with narrow pass-band and narrow transition band to reduce the frequency sample rate by factor of 64 for noise thermometer applications. The proposed multiratedecimation filter is composed of three stages; the first stage is a Cascaded Integrator Comb (CIC) decimation filter, the second stage is a two-coefficient Half-Band (HB) filter and the last stage is a sharper transition HB filter.

The frequency responses of individual stages as well as the overall filter response have been demonstrated with full simulation using MATLAB. The design and implementation of the proposedMDF on FPGA (XILINX Virtex XCV800 BG432-4), using VHSIC Hardware Description Language (VHDL), has been introduced. The implementation areas of the proposed filter stages are compared. Using CIC-HB technique saves 18% of the design area, compared to using six stages HB decimation filters.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	ii
ABSTRACT	iii
TABLE OF CONTENTS	V
LIST OF FIGURES	viii
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv
Chapter 1: Introduction	1
1.1 Digital Signal Processing	2
1.2 Analog and Digital Signal Processing	4
1.3 Fundamental of Digital Filters	9
1.4 Narrow Band LPF	11
1.5 Strengths and Weaknesses for FIR and IIR Filters	12
Chapter 2: Multirate Digital Filters	14
2.1 Introduction	15
2.2 Basic Multirate Operations	16
2.2.1 Decimation	16
2.2.2 Interpolation	20
2.3 Noble Identities	23
2.4 Polyphase Representation	24
2.5 Frequency Masking Filter	27

2.6 Multistage Multirate LPF	29
2.7 Factorization of the Decimation Factor	33
Chapter 3: MultirateFilters Architecture	
3.1: Introduction	37
3.2 Cascaded Integrator Comb (CIC) Filter Theory	39
3.2.1 Digital Integrator	44
3.2.2 Digital Differentiator	46
3.3 Multistage CIC Filter	48
3.4 Half-Band (HB) Filters	49
3.4.1 IIR-HB Filters	50
3.4.2 The Two-path Polyphase Half Band Filter	52
Chapter 4: Field Programmable Gate Array (FPGA) Technology and Design Flow	57
4.1 FPGA Technology	58
4.1.1 FPGA Design Stages	59
i. Design Modeling	
ii. Functional Verification and Simulation	
iii. Synthesis and Optimization	60
iv. Placement and Routing	61
v. Timing Verification and Simulation	61
vi. Configuration	
vii. Testing	

4.2 Hardware Concepts	
4.2.1 Xilinx Virtex Family	
4.2.2 Prototyping Environment	65
4.2.3 The Xilinx XCV800 device	67
4.3 PCI Interfacing System	68
4.3.1 PCI Top Level Interfacing Module	69
4.3.2 Read/Write Module	71
4.3.3 Software VI Driver	72
Chapter 5: FPGA Implementation	73
5.1 Introduction	74
5.2 Simulation Results	74
5.3 Hardware Implementation of the Proposed MultirateDecimation Filter	76
5.3.1 First Stage CIC Filter	76
5.3.2 Second Stage HB Filter (H ₁)	77
5.3.3 Third Stage HB Filter (H ₂)	78
5.4 FPGA Realization for the Proposed MDF	78
Chapter 6: CONCLUSION AND FUTURE WORK	82
6.1 Conclusion	83
6.2 Future Work	84
REFERENCES	
APPENDIX: VHDL Listings	

LIST OF FIGURES

Fig. 1.1:	DSP Applications	4
Fig. 1.2:	Direct realization of IIR filters	10
Fig. 1.3:	Direct realization of FIR filters	10
Fig. 1.4:	Specifications of a low-pass filter	12
Fig. 2.1:	Down-sampler	17
Fig. 2.2:	Down-sampling by M realized digitally $(M = 4)$	18
Fig. 2.3:	Down-sampling: Spectral Interpretation $(M = 4)$	18
Fig. 2.4:	Block diagram of a decimator	19
Fig. 2.5:	Up-sampler	21
Fig. 2.6:	Up-sampling by L realized digitally (L=4)	22
Fig. 2.7:	Up-sampling: Spectral Interpretation (L= 4)	22
Fig. 2.8:	Block diagram of an interpolator	23
Fig. 2.9:	The noble identities for multirate systems	23
Fig. 2.10:	Reconstruction of a decimation filter for M=2	26
Fig. 2.11:	Polyphase representation for (a) M-fold decimator, and	
	(b) L-fold interpolator	27
Fig. 2.12:	The frequency masking filters architecture	27
Fig. 2.13:	The frequency masking filter- frequency domain	28
Fig. 2.14:	Multistage IFIR decimator	31
Fig. 2.15:	Multistage IFIR interpolator	31
Fig. 2.16:	Multistage IFIR decimator with three-	
	stagedecomposition	32
Fig. 3.1:	Building blocks of the proposed MDF	39
Fig. 3.2:	Block diagram of a CIC decimator	40
Fig. 3.3:	Block diagram of a decimating CIC filter	40

Fig. 3.4:	Frequency response of three CIC filters, each witha	
	different number of stages	43
Fig. 3.5:	Block diagram of a digital integrator	44
Fig. 3.6:	Magnitude response of a digital integrator	45
Fig. 3.7:	Block diagram of a digital differentiator (comb filter)	47
Fig. 3.8:	Magnitude response of a digital differentiator (comb	
	filter)	47
Fig. 3.9:	Block diagram of 3rd order CIC filter	48
Fig. 3.10:	Frequency response of the CIC decimation filter	49
Fig. 3.11:	HB-IIR filter magnitude response	51
Fig. 3.12:	Frequency responses of two coefficients HB filters	53
Fig. 3.13:	HB filter: (a) the basic second-order all-pass, and	
	(b) the two-path HB low-pass filter	53
Fig. 3.14:	Frequency responses of four coefficients HB filters	54
Fig. 3.15:	The decimated two-coefficient all-pass HB filter,	
	(a) Conventional (b) Modified	55
Fig.3.16:	Frequency response of the proposed multirate CIC-HB	
	decimation filter	56
Fig. 4.1:	Design stages of FPGA	59
Fig. 4.2:	Virtex Architecture Overview	63
Fig. 4.3:	VirtexI/O Banks	63
Fig. 4.4:	2-slices Virtex CLB	64
Fig. 4.5:	Detailed View of Virtex Slice	65
Fig. 4.6:	UNIDAQ prototyping board	66
Fig. 4.7:	UNIDAQ block diagram	66
Fig. 4.8:	The PCI Interfacing System Block Diagram	69
Fig 4.9:	Screen layout of LabVIEW Driver	72

Fig. 5.1:	.1: Simulation results of the proposed multirate decimation	
	filter	75
Fig. 5.2:	Implementation result of the proposed multirate	
	decimation filter, for sinusoidal input f_{in} =87.125 KHz	79
Fig. 5.3:	Implementation result of the proposed multirate	
	decimation filter, for sinusoidal input f_{in} =156.25 KHz	80
Fig. 5.4:	Implementation result of the proposed multirate	
	decimation filter, for sinusoidal input f_{in} =312.5 KHz	80
Fig. 5.5:	Implementation result of the proposed multirate	
	decimation filter, for sinusoidal input f _{in} =425 KHz	81

LIST OF TABLES

Table 2.1:	Different multistage factorization comparison of FIR filters	35
Table 3.1:	Comparison of five multirate decimation filterarchitecture	38
Table 3.2:	HB filter coefficients in fixed-point binaryrepresentation	55
Table 4.1:	XCV800 device specification	68

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CD Compact Disk

CDMA Code Division Multiple Access

CIC Cascaded Integrator Comb

CIN Carry Input

CLB Configurable Logic Block

CLK Clock

CMOS Complementary Metal-Oxide Semiconductor

COUT Carry Output

CPU Central Processing Unit

CT Computed Tomography

DLL Delay-Locked Loop

DSP Digital Signal Processing

DVD Digital Video Disk

EC Clock Enable

FIR Finite Impulse Response

FM Frequency Masking

FPGA Field Programmable Gate Array

GCLK Global Clock

HB Half-Band

IFIR Interpolated FIR

IIR Infinite Impulse Response

IOB Input/output Block

ISE Integrated Software Environment

LabVIEW Laboratory Virtual Instrument Engineering Workbench

LC Logic Cell

LPF Low-Pass Filter

LUT Look-Up Table

MATLAB Matrix Laboratory

MDF Multirate Digital Filter

MRI Magnetic Resonance Imaging

PC Personal Computer

PCI Personal Computer Interface

RAM Random Access Memory

RC Synchronous Set

ROM Read-Only Memory

SBSRAM Synchronous Burst Static RAM

SP Synchronous Reset

TDMA Time Division Multiple Access

UniDAQ Universal DSP Data Acquisition board

Vcco Output source voltage

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VI Virtual Instrumentation Programming Package

VLSI Very Large Scale Integrated circuits

Vocoders Voice recorders

WE Write Enable

LIST OF SYMBOLS

a, b Filter coefficients

 B_{in} Bit width of CIC filter input

 B_{out} Bit width of CIC filter output

D Differential delay

f Frequency variable

 f_c Cut-off frequency

 f_s Sampling frequency

 f_{st} Stop frequency

 $h(nT_l)$ Anti-aliasing filter

 $h(mT_2)$ Anti-imaging filter

F(z), G(z), H(z), I(z) Transfer function

 $H(\omega)$ Frequency response

k Sample index for input signal

L Interpolation factor

m Sample index for output signal

M Decimation factor

N Filter order

S FIR filter number of stages

 T_1 Sampling interval of the original signal $(T = I / f_s)$

 T_2 Sampling interval of the decimated/interpolated

signal

x(n), $x(kT_1)$ Input discrete-time signals

y(n), $y(mT_2)$ Output discrete-time signals

X(z), Y(z) z-transform of discrete-time signals

 β Conjugate-complex pole pairs