STUDIES THE SOILS OF EL GABAL EL ASFAR AREA WHICH IRRIGATED BY SEWAGE SLUDGE AND EVALUATED

By

MAGDY MOHAMED MEKKAWI ODA

B. Sc. Agric. Sci. (Technology Reclamation And Desert Soil Cultivation), Open Education Center, Fac. Agric., Cairo Univ., Egypt, 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Soil Sciences)

Department of Soil Sciences
Faculty of Agriculture
Cairo University
EGYPT

2013

APPROVAL SHEET

STUDIES THE SOILS OF EL GABAL EL ASFAR AREA WHICH IRRIGATED BY SEWAGE SLUDGE AND EVALUATED

M.Sc. Thesis
In
Agric. Sci. (Soil Sciences)

By

MAGDY MOHAMED MEKKAWI ODA

B. Sc. Agric. Sci. (Technology Reclamation And Desert Soil Cultivation), Open Education Center, Fac. Agric., Cairo Univ., Egypt, 2003

APPROVAL COMMITTEE

Dr. TOLBA SALEH ABD EL-AAL
Professor of Soil Sciences, Fac. Agric., El Fayoum University
Dr. YAHYA ARFA AHMED
Associate Professor of Soil Sciences, Fac. Agric., Cairo University
Dr. WAEL AHMED ABD EL-KAWI
Professor of Soil Sciences, Fac. Agric., Cairo University
Dr. ALI ABD EL-HAMID ABD EL-HADY
Professor of Soil Sciences, Fac. Agric., Cairo University

Date: / / 2013

SUPERVISION SHEET

STUDIES THE SOILS OF EL GABAL EL ASFAR AREA WHICH IRRIGATED BY SEWAGE SLUDGE AND EVALUATED

M.Sc. Thesis
In
Agric. Sci. (Soil Sciences)

By

MAGDY MOHAMED MEKKAWI ODA

B. Sc. Agric. Sci. (Technology Reclamation And Desert Soil Cultivation), Open Education Center, Fac. Agric., Cairo Univ., Egypt, 2003

SUPERVISION COMMITTEE

Dr. ALI ABD EL-HAMID ABD EL-HADY Professor of Soil Sciences, Fac. Agric., Cairo University

Dr. WAEL AHMED ABD EL-KAWI Professor of Soil Sciences, Fac. Agric., Cairo University

Dr. RAFAT RMDAN ALI Assistant Researcher Professor of Soil And Water Use, NRC., Giza, Cairo Name of Candidate: Magdy Mohamed Mekkawi Oda Degree: M.Sc.

Title of Thesis: Studies the Soils of El Gabal El Asfar Area Which Irrigated by

Sewage Sludge and Evaluated

Supervisors: Dr. Ali Abd El-Hamid Abd El-Hady

Dr. Wael Ahmed Abdel-Kawy

Dr. Rafat Ramdan Ali

Department: Soil Sciences Approval: //

ABSTRACT

The investigated area locates to the east of the Nile Delta; it is bounded by latitudes 30° 11′ 15″ & 30° 14′ 10″ N and longitudes 31° 22′ 05″ & 31° 24′ 20″ E. According to the period of irrigation by sewage effluents, the soils of the area were divided into four grades. These include i) non-irrigated and barren, ii) irrigated for (24 years), iii) irrigated for (49 years) and iv) irrigated for 82 years until 2009 and after this the all area changed to irrigate by ground water.

Fifteen soil profiles were taken to represent the soils of the area. Morphological description and soil sampling were conducted during the field work. The soil properties including texture, depth, organic matter (O.M), EC, CaCO₃, pH, CEC, and ESP have been determined.

The soils were classified as: Typic Torripsamments and Typic Torrifluvents according to the American soil taxonomy. The soil capability classes ranged between (2) good and (5) very poor. The soil suitability ranged between S_1 and S_3 . The soils of the area are suitable for field crops (Wheat, Barley, Faba bean, Sugar beat, Sun flower, Maize, Soya bean, Peanut, Cotton, Sugar Cane), vegetable (Tomato, Pepper, Watermelon, Alfalfa, Sorghum), and fruit (Citrus, Grape, Olive, Apple, Pear, Figs, Date palm). The soils are in general not suitable for Cabbage, Onion, Rice and Banana.

Key words: Soil taxonomy, Soil evaluation, Remote sensing, GIS, El Gabal El Asfar, Egypt

DEDICATION

I dedicate this work to whom my heart felt thanks; to my mother and my late father for their patience and help, as well as to my brother Dr. Nasser and his wife Dr. Dalia, as well as to my wife, my sons and my daughters.

ACKNOWLEDGEMENT

I wish to express my deepest appreciation and sincerest gratitude to **Dr. Ali Abd El Hameed** Professor of Soil Pedology in Soil Department, Faculty of Agriculture, Cairo University and **Dr. Wael Abd El kawy** Professor of Soil Pedology in the same department, for their kindness, their continuous guidance and fruitful efforts to supervise this work.

Grateful thanks are due to Prof. **Dr. Rafat Rmadan Ali**Assistant Researcher Professor of Soil in Soils and Water Use
Department, National Research Center for his sincere supervision
and assistant throughout this work.

Grateful thanks are due to Mr. Mohamed Hasanen, brother- in-law and Eng. Nagah Salama, the previous manager of El Gabal El Asfar farm for their assistant throughout this work.

A great appreciation is expressed to everyone in Soil Department, Faculty of Agriculture, Cairo University help through out this work,

Special deep appreciation is given to my late father, my mother, my wife, my brothers and sisters. Also I feel deeply grateful to my dear country Egypt.

CONTENTS

	RODUCTION
	TEW OF LITERATURE
1. I	Location
2. (Climate
3. T	Гороgraphy
4. (Geological formation of the studied area
5. I	Hydrogeological Characteristics
a	a. Holocene layer semi-outlet.
t	o. Pleistocene tank
6. I	Land Evaluation
8	a. Definitions
t	b. Land capability
C	c. Land suitability
7. I	Remote Sensing
8. (Geographic Information System (GIS)
9. (GIS functions
10. 5	Soils
MA	ΓERIALS AND METHODS
1. I	Digital image processing and data extraction
í	a. Image classification
ł	b. Image Visual interpretation
2. (GIS applications
8	a. Data input
ł	b. Digitizing
	The Field Studies.
4. I	Laboratory analysis
	Land Capability and Suitability
RES	ULTS AND DISCUSSION
1. I	Physiographic of the studied area
a	. Low elevated sand sheet

C	UN	TENTS (continued)
	(1)	Morphological description
	(2)	Particle size distribution.
	(3)	The Analytical Analysis of Chemical Properties
	(4)	Soil classification.
	(5)	Soil capability
	(6)	Soil suitability
b.	Mo	derately elevated sand sheet
	(1)	Morphological description
	(2)	Particle size distribution.
	(3)	The Analytical Analysis of Chemical Properties
	(4)	Soil classification.
	(5)	Soil capability
	(6)	Soil suitability
c.	Hig	hly elevated sand sheet
	(1)	Morphological description
	(2)	Particle size distribution.
	(3)	The Analytical Analysis of Chemical Properties
	(4)	Soil classification.
	(5)	Soil capability
	(6)	Soil suitability
d.	Lov	v elevated alluvial landform
	(1)	Morphological description
	(2)	Particle size distribution.
	(3)	The Analytical Analysis of Chemical Properties
	(4)	Soil classification
	(5)	Soil capability
	(6)	Soil suitability
e.	Hig	h elevated alluvial landform
	(1)	Morphological description
	(2)	Particle size distribution.
	(3)	The Analytical Analysis of Chemical Properties

CONTENTS (continued) (4) Soil classification. 95 (5) Soil capability..... 95 (6) Soil suitability..... 95 2. Thematic Map **98** 3. Soil Capability..... 106 4. Soil Suitability Class 106 SUMMARY 110 REFERENCES 113 ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Climatological data at El-Khanka the average during the period (1999-2011)	5
2.	Rating of soil depth	35
3.	Capability classes and ratings used by ALES arid-GIS	35
4.	Land suitability classes, definition and ranges used by ALES arid-GIS	35
5.	Areas of the different Physiographic soil Unit	40
6.	Particle size distribution analysis of low elevated sand sheet	47
7.	Some chemical characteristics of low elevated sand sheet	48
8.	Class of land capability of low elevated sand sheet	49
9.	Particle size distribution analysis of moderately elevated sand sheet	57
10	Some chemical characteristics of moderately sand sheet	58
11	Class of land capability of moderately elevated sand sheet	59
12	Particle size distribution analysis of highly elevated sand sheet	68
13	Some chemical characteristics of highly elevated sand shee.	69
14	Class of land capability of moderately elevated sand sheet	70
15	Particle size distribution analysis low elevated alluvial soil	81
16	Some chemical characteristics of low elevated alluvial soil	82
17	Class of land capability of low elevated alluvial soil	83
18	Particle size distribution analysis of high elevated alluvial soil	93
19	Chemical analysis of high elevated alluvial soil	94
20	Class of land capability of high elevated sand sheet	95
21	Areas of the different soil texture class	98

TABLES (continued)		
22 Legend for Suitability map	107	

LIST OF FIGURES

No	Title	Pag
1.	Location Map of the Studied Area.	4
2.	Rainfall and ETP of the Studied Area.	5
3.	Topography Map of the Studied Area	7
4.	Geological map of the Studied Area (after RIGW, 1989)	8
5.	Hydrogeogical Cross Section (after RIGW, 1989)	10
6.	Landsat ETM+7 image	27
7.	Digital elevation model.	28
8.	Physiographic units and profiles sites	39
9.	Photography image of profile No. (1,2 and 6)	46
10	Soil suitability for crops profile 1	50
11	Soil suitability for crops profile 2	50
12	Soil suitability for crops profile 6	51
13	Photography image of soil profile No. (10 and 15)	52
14	Soil suitability for crops profile 10	60
15	Soil suitability for crops profile 15	60
16	Photography image of soil profile No. (4,9 and 11)	66
17	Soil suitability for crops profile 4	70
18	Soil suitability for crops profile 9	71
19	Soil suitability for crops profile 11	71
20	Photography image of soil profile No. (3 and 5)	79
21	Photography image of soil profile No. (7 and 8)	79
22	Soil suitability for crops profile 3	84
23	Soil suitability for crops profile 5	84
24	Soil suitability for crops profile 7	85
25	Soil suitability for crops profile 8	85

FIGURES (continued)

26	Photography image of soil profile No. (12 and 13)	91
27	Photography image of soil profile No. (14)	91
28	Soil suitability for crops profile12	96
29	Soil suitability for crops profile 13	96
30	Soil suitability for crops profile 14	97
31	Soil texture Map of the studied area	100
32	CEC (meq/100gm. Soil) distribution at the studied area	101
33	Map of CaCO ₃ content.	102
34	O.M% Map.	103
35	Salinaty Map of the Studied Area	104
36	Alkalinaty Map of the Studied Area.	105
37	Soil Capability Map of the Studied Area.	108
38	Soil Suitability Map of the Studied Area	107

INTRODUCTION

Agriculture plays a main role in the growing and stability of the national economy. Egypt's area extends to million km², 94% of this area is classified as a desert while habited area is about 6%. There is a shortage in per capita of the agricultural area.

The Nile River is the main source of water supplying Egypt with 55.5 billion m³ of water. Egypt is classified as an arid area characterized by rain shortage and high temperature which is considered a hinder of development and expansion in agriculture area.

Since 1900, Egypt began to apply the use of sewage water in farming as unconventional source of water to reduce the water shortage and achieve the block of the food gap between the product and the overpopulation. Sewage water contains useful nutrients for soil fertility and plants nutrition. The benefits of these nutrients depend on the concentrations of the nutrients in wastewater, the quantities of wastewater applied, the times of application, the type and the target yield of the crop grown, and the fertility of the soil. (Janssen et al. 2005). On the other hand it contains high percentage of heavy metals which cause toxicity of plant and a harmful effect on humans.

El Gabal El Asfar farm is one of these areas which has started to use sewage water in irrigation since 1911. It is located in the Eastern desert in the southeastern edge of Al Qaliobia governorate.

Soil evaluation is one of the methods which can be inferred from the productive capacity of the land and its ability for different uses.

Geographic information system (GIS) and remote sensing (RS) techniques were used in order to implement this study. Remote sensing (RS) and geographic information system (GIS) techniques proved to be effective in management, detection, prediction and planning studies. Remote Sensing is the science of acquiring, processing and interoperating images that record the interaction between electromagnetic energy and matter. GIS is considered as organized collection of computer hardware, software, spatial and non-spatial data that can help users for the efficient capture, storage, update, manipulation, analysis and management of all geographically referenced information. The present study aims to achieve the following objectives:

- 1. Physiographic map of the studied area.
- 2. Soil map of the studied area.
- 3. Land capability map of the studied area.
- 4. Land suitability map of the studied area.