Correlation between Clinical Parameters, Blood Pressure Dipping, Highly Sensitive CRP Plasma Level and Carotid Intima-Media Thickness in Patients with Obstructive Sleep Apnea

Thesis
Submitted for Partial Fulfillment of M.D. Degree in Cardiology

By **Noha Hassanin Mohammed Aly**

Supervisors

Prof. Dr. Soliman Gharib Ibrahium

Professor of Cardiology Cairo University

Prof. Dr. Ahmed Elsayed Eltaweel

Professor of Clinical & Chemical Pathology Cairo University

Dr. Hussein Heshmat Mohamed

Lecturer of Cardiology Cairo University

Faculty of Medicine Cairo University 2009

بسم الله الرحمن الرحيم

(وقل رب زدنی علمًا)

(صدق الله العظيم) (سورة طه – ١١٤)

ACKNOWLEDGEMENTS

First and foremost, I feel always indebted to **God**, the most kind and the most merciful.

Second, I would like to express my everlasting appreciation and my deepest gratitude to **Prof. Dr. Soliman Gharib Ibrahium**, Professor of Cardiovascular Diseases Faculty of Medicine, Cairo University, to whom this work owes its existence. His valuable and illuminating ideas added much to the value of this study. He is gratefully acknowledged for his constructive suggestions towards the development of this study. Without his expertise this work would not have been possible.

I'm grateful to **Prof. Dr. Ahmed Elsayed Eltaweel**Professor of Clinical & Chemical Pathology, Cairo University for his great help and sincere work throughout this study.

I'm grateful to **Dr. Hussein Heshmat Mohammed**, Lecturer of Cardiovascular Diseases, Faculty of Medicine, Cairo University, for his indispensable directions, valuable remarks, suggestions and advice throughout the course of this study.

Lastly, but not least, I would like to express my deepest gratitude to the Staff Members of the Cardiovascular Department at Cairo University for their cooperation.

Noha Hassanin

Abstract

Correlation between Clinical Parameters, Blood Pressure Dipping, Highly Sensitive CRP Plasma Level and Carotid Intima-Media Thickness in Patients with Obstructive Sleep Apnea

Background: Mechanisms for linkage between sleep disordered breathing and cardiovascular diseases are not fully determined but surges in sympathetic nerve activity are seen at the end of each apnoeic episode accompanied by large rises in systemic arterial blood pressure.

Material & Methods: The study was conducted on 50 patients complaining of snoring and/ or excessive daytime sleepiness assessed by **Epworth Sleepiness Scale**. All were subjected to sleep study, 24hour ambulatory blood pressure monitoring ,carotid duplex scanning and quantitative determination of high sensitivity C- reactive protein

Results: Patients having apnea hypopnea index (AHI) \geq 5 diagnosed as apnea group (group I) and those having AHI less than 5 were diagnosed as snorers (group II). Seventy eight percentage of study population were non nocturnal dippers, 81.3% of group I versus 72.2% of group II with non significant p value (p = 0.494). Mean diastolic day and night blood pressure, was higher in group I compared to group II with significant p value 0.028 and 0.007 respectively. Mean Carotid intima media thickness (IMT) was significantly higher in group I with p <0.001.

Conclusion: Epworth Sleepiness Scale is good reflector of sleep study data. Mean diastolic day and night blood pressure, mean arterial blood pressure are significantly higher in apnea patients. Increased carotid IMT is associated with higher AHI, lower minimum saturation assessed during the sleep study and higher HS- CRP serum level.

Key words: Obstructive Sleep Apnea

Cardiovascular diseases

CONTENTS

Title	Page
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	
Chapter (1): Normal sleep	7
Chapter (2): Practice of sleep medicine	16
Chapter (3): Sleep Disorders	30
Chapter (4): Sleep apnea	43
Chapter (5): Obstructive sleep apnea and cardiovascular system	65
MATERIALS AND METHODS	90
RESULTS	98
DISCUSSION	124
SUMMARY	137
CONCLUSION AND RECOMMENDATIONS	143
REFERENCES	146
MASTER TABLES	163
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

AASM : American Association of Sleep Medicine

ABPR : Ambulatory blood pressure recording

AHI : Apnea hypopnea index

ARIC : Atherosclerosis Risk in Communities

BMI : Body mass index

BP : Blood pressure

CAC : Coronary artery calcification

CAD : Coronary artery disease

CAI : Central Apnea Index

CPAP : Continuous positive airway pressure

CRT : Cardiac resynchronization therapy

CSA : Central sleep apnea

CSB : Cheyne Stokes Breathing

CVD : Cardiovascular diseases

ESS : Epworth Sleepiness Scale

HS CRP: High sensitivity C – reactive protein

IMT : Intima -media thickness

MSLT : Multiple Sleep latency Test

OSA : Obstructive sleep apnea

OSA : Obstructive sleep apnea

OSAS : Obstructive sleep apnea syndrome

RDI : Respiratory disturbance index

RERA : Respiratory effort-related arousal

SDB : Sleep disordered breathing

Syndrome SAH: Syndrome sleep apnea hyperpnoea

UARS : Upper airway resistance syndrome

WHR : Waist-to-hip ratio

LIST OF FIGURES

Title	Page
Fig. (1): Biological Mechanisms of Sleep & Wakefulness	7
Fig. (2): Brain Function in REM sleep	8
Fig. (3): Reticular Activating system and sleep	9
Fig. (4): Stages of sleep	11
Fig. (5): Polysomnographic setting	23
Fig. (6): Obstructive apnea chart	28
Fig. (7): Standardized tonsillar hypertrophy grading scale.	40
Fig. (8): Algorithm for the management of OSA in children.	41
Fig. (9): Spectrum of sleep disordered breathing	44
Fig. (10): Abnormal airway during sleep	47
Fig. (11): Effect of apnea index on mortality	50
Fig. (12): Diagnosis of obstructive sleep apnea-hypopnea (OSAH)	52
Fig. (13): Multidisciplinary approach to obstructive sleep apnea	53
Fig. (14): Treatment of obstructive sleep apnea	54
Fig. (15): Nasal continuous positive airway pressure	55
Fig. (16): Mandibular repositioning appliance	58
Fig. (17): Tongue Retaining Device	58
Fig. (18): Schematic outlining possible mechanisms underlying development of CSA	61
Fig. (19): A typical polysomnographic recording from a patient with refractory hypertension and obstructive sleep apnoea (OSA)	71
Fig. (20): Effect of CPAP on daytime mean arterial pressure	72
Fig. (21): Carotid plaque	76
Fig. (22): Carotid bifurcation	77
Fig. (23): Aging and carotid intima media thickness	78
Fig. (24): Longitudinal view of CCA and carotid bifurcation and origin of internal and external carotid arteries.	79
Fig. (25): IMT measurement from a B-mode ultrasound image in the longitudinal view of the right common carotid artery	79
Fig. (26): Carotid intima-media thickness predicts future strokes	80
Fig. (27): Plaque volume measured by Disc Segmentation	81
Fig. (28): Carotid plaque area	82

Fig. (29): Sex differences in carotid plaques	82
Fig. (30): Drawn representation of carotid tree, with plaque and IMT measurement according to Mannheim consensus	83
Fig. (31): CTA of left carotid bifurcation demonstrates high grade stenosis at the origin of the left internal carotid artery	84
Fig. (32): Somno check effort device	93
Fig. (33): Technique of carotid ultrasonagraghy	96
Fig. (34): The two groups of the study	98
Fig. (35): Gender distribution of the study	99
Fig. (36): Risk factors of the study population	103
Fig. (37): Risk factors both groups	104
Fig. (38): Mean age in both groups	104
Fig. (39): Gender distribution in both groups	105
Fig. (40): Epworth Sleepiness Scale in both groups	106
Fig. (41): Mean BMI in both group	106
Fig. (42): Mean neck circumference in both groups	107
Fig. (43): Mean waist circumference in both groups	107
Fig. (44): Nocturnal dipping in both groups	108
Fig. (45): Ambulatory blood pressure data in two groups	109
Fig. (46): Mean IMT in 2 groups	110
Fig. (47): Mean AHI in both groups	111
Fig. (48): Mean Epworth scale in males and females in all groups	112
Fig. (49): Duration of apnea in both groups	112
Fig. (50): Epworth Sleepiness Scale and duration of apnea in minutes in group I	113
Fig. (51): Desaturation index in both groups	113
Fig. (52): Desaturation index and Epworth scale in group I	114
Fig. (53): Mean minimum saturation in both groups	114
Fig. (54): Total number of heart rate variation in both groups	115
Fig. (55): Total number of heart rate variation and mean Epworth scale in group I	115
Fig. (56): Number of hypopnea and apneas both groups	116
Fig. (57): Total number of desaturation in both groups	117
Fig. (58): Total number of desaturations and mean Epworth scale in group I	117
Fig. (59): Percentage of patients having mild, moderate, severe obstructive sleep apnea and snorers in low, moderate and high vascular risk groups	119
Fig. (60): BMI among low, moderate and high vascular risk groups according to their Hs- CRP serum levels	121

Fig. (61): Neck circumference among low, moderate and high vascular risk groups according to their Hs- CRP serum levels	121
Fig. (62): Waist circumference among low, moderate and high vascular risk groups	121
according to their Hs- CRP serum levels	

LIST OF TABLES

Title	Page
Table (1): Epworth sleepiness scale	20
Table (2): Stanford Sleepiness Scale	21
Table (3): The Berlin Questionnaire	22
Table (4): Reference values of sleep pattern in adults	25
Table (5): Diagnosis of Obstructive Sleep Apnea in Children	39
Table (6): Mallampati Classification	46
Table (7): Studies showing the effect of CPAP on Blood Pressure	73
Table (8): Updated ATP III criteria for diagnosis of Metabolic syndrome	92
Table (9): The two groups of the study	98
Table (10): Gender distribution of the study	99
Table (11): Diabetes mellitus in the study population	99
Table (12): Diabetes Mellitus in both groups	100
Table (13): Systemic hypertension in the study population	100
Table (14): Systemic hypertension in both groups	100
Table (15): Dyslipidemia in the study population	101
Table (16): Dyslipidemia in both groups	101
Table (17): Metabolic syndrome in the study population	102
Table (18): Metabolic syndrome in both groups	102
Table (19): Alcoholic consumption in study population	102
Table (20): Alcoholic consumption both groups	103
Table (21): Nocturnal dipping in study population	108
Table (22): Nocturnal dipping in both groups	108

Table (23): Epworth scale and HS-CRP serum level	118
Table (24): Waist circumference and CRP serum level	120
Table (25): Neck circumference and CRP serum level	120
Table (26): BMI and CRP serum level	120
Table (27): Anthropometric criteria, 24 hour ambulatory blood pressure monitoring data, carotid mean intima- media thickness (IMT), mean HS- CRP serum level and sleep study data of apnea group	122
Table (28): Anthropometric criteria, 24 hour ambulatory blood pressure monitoring data, carotid mean intima- media thickness (IMT), mean HS- CRP serum level and sleep study data of snorers	123

INTRODUCTION

Sleep-disordered breathing (SDB) briefly means cessation of breathing during sleep at least 5 times per hour. It affects 9 to 24% of the middle-aged and overall 4% of the middle-aged males. Several major epidemiological studies have shown that SDB is not only an independent risk factor for systemic hypertension but it is also associated with cardiovascular complications such as heart failure, stroke, and sudden death.

Obstructive sleep apnea OSA is characterized by repetitive interruption of ventilation during sleep caused by collapse of the pharyngeal airway. An obstructive apnea is a ≥ 10 -second pause in respiration associated with ongoing ventilatory effort. Obstructive hypopneas are decreases in, but not complete cessation of, ventilation, with an associated fall in oxygen saturation or arousal.

Diagnosis of OSA syndrome is accepted when a patient has apneahypopnea index (AHI; number of apneas and hypopneas per hour of sleep) more >5 and symptoms of excessive daytime sleepiness

The primary abnormality in patients with OSA is an anatomically small pharyngeal airway resulting from obesity, bone and soft tissue structures, or, in children, tonsils and adenoids.

During wakefulness, this leads to increased airflow resistance and greater intrapharyngeal negative pressure during inspiration.

Mechanoreceptors located primarily in the larynx respond reflexively to this negative pressure and increase the activity of a number of pharyngeal dilator muscles, thereby maintaining airway patency while awake.

However, during sleep, the reflex pharyngeal muscle activity that drives this neuromuscular compensation is reduced or lost, leading to reduced dilator muscle activity and ultimately to pharyngeal narrowing and intermittent complete collapse.

During the subsequent apnea or hypopnea, hypoxia and hypercapnia stimulate ventilatory effort and ultimately arousal from sleep to terminate the apneic event. Thus, an upper airway that requires reflex-driven muscle activation to maintain patency during wakefulness may be vulnerable to collapse during sleep.

Central sleep apnea CSA is characterized by repetitive cessation of ventilation during sleep resulting from loss of ventilatory drive. A central apnea is a ≥ 10 -second pause in ventilation with no associated respiratory effort. Generally, ≥ 5 such events per hour are considered abnormal.

CSA syndrome is present when a patient has >5 central apneas per hour of sleep and the associated symptoms of disrupted sleep (frequent arousals) and/or hypersomnolence during the day. Because central apneas also may occur in an individual with obstructive apneas, care must be exercised in deciding that CSA rather than OSA is the principal problem. Although there is no absolute standard in this regard, studies of patients with CSA require that >50% of all events be central, with >80% central events often being required.

Cheyne-Stokes respiration (CSR) generally occurs in patients with heart failure, although it has been described in association with neurological disorders, including neurovascular disorders and dementia. It is characterized by a crescendo-decrescendo pattern of breathing with a central apnea or hypopnea at the nadir of ventilatory effort. In patients with heart failure, CSR is believed to result from a high-gain ventilatory control system (increased hypercapnic responsiveness) combined with a prolonged circulation time. This combination leads to unstable ventilatory control and this particular pattern of periodic breathing.

Unstable ventilatory control can promote obstructive events in an individual with a collapsible pharyngeal airway resulting from diminished upper airway muscle activation at the nadir of the cycling respiration. Thus, both central and obstructive events are commonly seen in these patients.

A recent analysis of data from >6000 adults participating in the **Sleep Heart Health Study** noted that hypopneas accompanied by oxyhemoglobin desaturation of $\geq 4\%$ were associated with prevalent cardiovascular disease independently of confounding covariates.

In contrast, no association was observed between cardiovascular disease and hypopneas associated with milder desaturation or arousals.

The mechanisms for the linkage between SDB and cardiovascular diseases are not fully determined but surges in sympathetic nerve activity are seen at the end of each apnoeic episode accompanied by large rises in systemic arterial blood pressure (BP). The increased levels of muscle sympathetic nerve activity are diminished by nasal continuous positive airway pressure (CPAP) therapy.

Numerous studies have found a hypercoagulable state in terms of increased clotting factor and platelet activities, and impaired fibrinolysis in coronary artery disease, ischaemic stroke, and SDB.

Common carotid artery intima-media thickness (IMT) has been shown to correlate with traditional vascular risk factors and may predict the likelihood of

acute coronary events and stroke. Recently, carotid artery IMT has been shown to have positive correlations with the severity of SDB.

Screening of patients for SDB can be accomplished by several different methods, although the sensitivity and specificity of these have not been well documented, particularly in cardiovascular patients, and may be expected to be affected by pretest probability. Some of these options include the **Epworth Sleepiness Scale**, **Berlin questionnaire**, overnight oximetry, and devices combining limited respiratory assessment, ECG, and oximetry

In patients with suspected OSA, a definitive diagnosis often requires spending a night in a sleep laboratory during which multiple physiological variables are continuously recorded (polysomnography). These variables generally include sleep staging using the electroencephalogram, electromyogram, electrooculogram, respiration (flow, effort, oxygen saturation), and snoring. With these signals, disordered breathing, in addition to its effect on sleep and oxygenation, can be precisely quantified.

The importance of the cardiovascular response to sleep has been recognized in the recently revised Sleep Scoring Manual from the **American Association of Sleep Medicine (AASM),** which now includes scoring of a continuous-lead ECG as a recommended component of polysomnography.

There is controversy as to whether disordered breathing during sleep can be adequately assessed using fewer signals recorded in the home. Most of these systems are limited to monitoring the respiratory channels listed above and do not include sleep staging or other non respiratory signals.

Obesity is the single most important cause of OSA. Weight loss can lead to a decrease in AHI, improved sleep efficiency, decreased snoring, and improved oxygenation. The most dramatic results have been reported with surgical weight loss. In addition, apnea often is worse in the supine posture, with some patients having OSA only in that position. For patients with "positional apnea," behavioral techniques aimed at keeping the patient in the lateral posture during sleep (an uncomfortable object sewn into the back of the nightshirt or positional alarms) may offer benefit.

Effective treatment of OSA by CPAP has been shown to markedly and acutely decrease BP and sympathetic traffic during sleep. Chronic effects of CPAP treatment are less clear because of the relative lack of robust longitudinal controlled studies. Many of the early studies had no control group or did not include 24-hour ambulatory BP recording. In an observational study of CPAP-treated versus CPAP intolerant patients, no significant differences were evident

in the development of new cases of hypertension in the treated versus untreated group. In addition, short-term CPAP treatment in patients with well-controlled hypertension did not elicit any BP improvement.

Recent studies have more often been placebo controlled, comparing CPAP with either placebo pills or with sham CPAP. BP reduction is either modest or absent in normotensive subjects but may be more evident in hypertensives. Three studies reporting a fall in BP used subtherapeutic (sham) CPAP in the control arm. The largest of all the studies (118patients) reported a reduction of 3.4/3.3 mm Hg (slightly larger during the day than during the night). In patients taking antihypertensive drugs, the 24-hour mean BP fall was about twice as large (6.7 versus 3.3 mm Hg), and the benefit was greater in patients with more severe OSA. The second study found that both placebo CPAP and real CPAP reduced daytime BP equally well but that only real CPAP lowered the nighttime pressure. The third study found that therapeutic CPAP lowered daytime BP by 10.3/11.2 mm Hg more than subtherapeutic CPAP and nighttime pressure by 12.6/11.4 mm Hg.

However, in another study comparing the effects of CPAP in hypertensives with and without OSA, CPAP lowered the nighttime pressure in those with OSA but had no effect on the daytime pressure.

A randomized placebo-controlled study of 1 month of therapeutic CPAP versus subtherapeutic CPAP on ambulatory BP showed no significant changes in systolic, diastolic, daytime, or nighttime BP

Considered together, these studies suggest that there are moderate and variable effects of CPAP on BP in patients with OSA. Patients with more severe OSA, difficult-to-control hypertension, and better CPAP compliance may have more substantial BP reduction with CPAP.

Despite the effectiveness of CPAP in treating OSA, adherence to therapy continues to be a major problem. This relates primarily to the facial interface (mask) and the pressure required to prevent airway collapse, with some patients finding CPAP intolerable.

When CPAP proves unacceptable, oral appliances should be considered. Most such appliances lead to anterior mandibular repositioning, which acts by pulling the lower jaw (and thus the tongue) forward, thereby enlarging the pharyngeal airway.