Surface Texture and Potential Accumulation of Streptococcus mutans on Composite resin Surface.

Thesis

Submitted to the Faculty of Dentisry, Ain Shams University, In partial fulfillment of the requirements for the Master degree in Operative Dentistry

BY

Ibrahim Gamil Hussien Mady

B.D.S. 2002 Faculty of Dentistry, Ain Shams University.

بسم الله الرحمن الرحيم

قبل إن حلاتي ونسكي ومدياي ومماتي الله ربد العالمين (162) لا شريك له وبذلك أمرت وأذا أول المسلمين (163)

حدق الله العظيم

سورة الأنعام

Supervisors

Prof.Dr. Hanan Abdel-Aziz Niazi

Professor of Operative Department, Faculty of Dentistry, Ain Shams University

Prof.Dr. Sherin Bendary El Said

Professor of microbiology department, Faculty of Medicine, Ain Shams University

Acknowledgements

First of all, I want to thank God for giving me the strength, and effort that helped me in accomplishing this thesis.

Words stands short when coming to express my sincerer thanks and grateful appreciation to **Dr. Hanan Niazi**, professor of Operative Dentistry, Faculty of Dentistry, Ain-Shams University, for her valuable help, wise, guidance and encouragement through out the thesis.

I would like to express my profound gratitude and sincerer thanks to **Dr. Sherin Bendary**, professor of microbiology, Faculty of Medicine, Ain-shams University, for her constructive comments, valuable advices and suggestions.

I'd like to thank all members of Operative Dentistry Department, Faculty of Dentistry, Ain shams University for their valuable help and co-operation,

Dedicated

To my great parents for their prays
To my wonderful family for their
love and kindness

To my wife for her patience and support

To my precious sons Adam & Noah for sake of their future

Contents

Pag	es
List of tables	i
List of figures	ii
Introduction	1
Review of literature	4
Aim of study 5	54
Materials and methods5	55
Results	77
Discussion 9	94
Summery and conclusions)6
References	0
Arabic summery	

List of Tables

	Page
Table (1):	Materials used
Table (2):	Factors were investigated
Table (3):	Interactions between variables
Table (4):	Descriptive statistics for the effect of different surface
	treatments on surface roughness
Table (5):	Multiple comparisons test of significance for the effect of
	different surface treatments on surface roughness 79
Table (6):	Descriptive statistics for the effect of different surface
	treatments on potential accumulation of streptococcus
	mutans on composite resin surface
Table (7):	Multiple comparisons test of significance for the effect of
	different surface treatments on potential accumulation of
	streptococcus mutans on composite resin surface 87

List of figures

	Page
Fig. (1):	All materials used
Fig. (2):	Dental composite material restorative material used 57
Fig. (3):	White Jiffy fine polisher rubber cup 57
Fig. (4):	Tapered cone 12 (bladed/flutes) finishing carbide bur 57
Fig. (5):	Tapered multilayer diamond stone grit size 25µm 58
Fig. (6):	SwissTEC SL Bonding resin 58
Fig. (7):	Teflon mould
Fig. (8):	Curing Radiometer
Fig. (9):	All samples were stored in distilled water for 24h at 37 C
Fig. (10):	Balance scalar
Fig. (11):	TR100 Surface Roughness Tester 68
Fig. (12):	Reference surface 69
Fig. (13):	Bottom of TR100 tester where composite sample is mounted to measure Ra

Fig. (14):	Checking the accuracy of surface roughness tester by measuring the known Ra specimen surface
Fig. (15):	Ra of a composite sample of resin coated group after curing against celluloid matrix. (group7)
Fig. (16):	Mitis salivarius agar powder
Fig. (17):	Composite discs were immersed each in tube containing 1 ml of <i>streptococcus mutans</i> suspension
Fig. (18):	Dilution method for bacterial culture
Fig. (19):	Mitis salivarius with bacitracin (MBS) plate (not inoculated)
Fig. (20):	Plates were incubated an-aerobically at 37°C for 48 hours
Fig. (21):	MSB agar plate showing many colonies of bacteria75
Fig. (22):	Count-plate showing 13 CFUs75
Fig. (23):	Mean surface roughness in different composite groups . 78
Fig. (24):	Ranking of mean surface roughness of composite groups in ascending order
Fig. (25):	Mean CFUs/ml in different composite groups 86
Fig. (26):	Ranking of mean bacterial counts on different composite groups in ascending order
Fig. (27):	Correlation between Ra and CFUs of different groups93

Composite restorations are widely used now by many dentists all over the world. With enhanced mechanical and esthetical properties, composite is not any more avoided in posterior restorations as well as anterior ones. The ideal composite restoration should follow the rules of mechanical and esthetical considerations, as well as biocompatibility to oral environment.

Most of the recent researches now are more interested in surface properties of composite, as the improving of bulk properties has reached reasonable results. Unfortunally, many dentists do not pay that attention to the surface while manipulation of composite filling, they pay most of their attention to the retention, resistance and appearance of the filling with little or sometimes no check to the surface roughness. With increasing demands of highly refined carbohydrates, the hazards of streptococcus mutans has increased too, and the accumulation of bacterial colonies on tooth surface as well as restoration surface is just the begin of a new carious lesion.

In restorative dentistry, one of the main goals is to increase the lifetime of dental restorations. The clinical success of resin composites is related to the appearance and surface

smoothness; however the replacement frequency of tooth-colored restorations is mostly because of secondary caries and discoloration (Strassler and Bauman, in 1993, Mjör et al., in 2000, and Jefferies, in 2007). It is essential to obtain adequate smoothness and gloss for a successful resin composite restoration. Moreover, there should also be a healthy relationship between the restoration and the adjacent dental tissues. The inadequate finishing/polishing of resin composites leads to increased plaque retention, gingival inflammation, discoloration and also leads to patient discomfort (Weitman and Eames, in 1975, Hachiya et al., in 1984, Quirynen et al., in 1990, Bollen et al., in 1997, and Aykent et al., in 2010).

Jones et al., in 2004, reported that a surface roughness of 0.3 µm can be detected by the tip of the patient's tongue. Proper contour, smoothness and high gloss can produce the desired appearance of natural tooth structure desired by patients (Cenci et al., in 2008).

Many dentists, neglect doing a proper polishing of composite, some do not use the celluloid matrix while setting, others may use a carbide bur or diamond stone to abrade a high spot of the filling after polishing, and many may just add some

bonding agent to the surface of the filling and consider that mission is accomplished. This study is trying to see how these procedures could affect the surface texture of the composite filling, and make it more or less liable to accumulation of Bacteria on its surface.

- A- Composite evolution and types.
- B- Finishing and polishing procedures of composite.
- C- Methods of composite surface roughness measurements.
- D- Role of Streptococcus mutans in dental decay.
- E- Streptococcus mutans correlation with surface roughness
- F- Culture media for the growth and enumeration of *Streptococcus mutans*

A- Composite evolution and types.

To improve the physical characteristics of unfilled acrylic resins, Bowen developed a polymeric dental restorative material reinforced with silica particles. The introduction of this filled resin material in 1962 became the basis for the restorations that are generically termed composites. Basically, composite restorative materials consist of a continuous polymeric or resin matrix in which inorganic filler is dispersed. This inorganic filler phase significantly enhances the physical properties of the composite. Composites are usually divided into three types based primarily on the size, amount, and composition inorganic filler: (1) of the conventional composites, (2) microfill composites, and (3) hybrid composites. More recent changes in composite composition have resulted in several other hybrid type categories, including flowable, packable, and nanofill composites. The microfill or "polishable" composites were designed & introduced in the late 1970s replace the rough surface characteristic conventional composites with a smooth lustrous surface similar to tooth enamel. Instead of containing the large filler particles typical of the conventional composites (approximately 8 mm.), microfill composites contain colloidal silica particles whose average diameter is (0.01 to 0.04 mm). In an effort to combine the favorable physical and mechanical properties characteristic of conventional composites with the smooth surface typical of the microfill composites, hybrid composites were developed. an inorganic filler content of approximately 75% to 85% by weight. The filler is typically a mixture of microfiller and small filler particles that results in a considerably smaller average particle size (0.4-1 mm) than that of conventional composites. Nanofill composites contain filler particles that are extremely small (0.005-0.01 µm) resulting in good physical properties esthetics. The small primary particle size also makes and nanofills highly polishable. (Roberson, in 2006).

The composition of resin-based dental composites has evolved significantly since the materials were first introduced to dentistry more than 50 years ago. Until recently, the most important changes have involved the reinforcing filler, which has been purposely reduced in size to produce materials that are more easily and effectively polished and demonstrate greater wear resistance. The latter was especially necessary for materials used in posterior applications, but the former has been important for restorations in all areas of the mouth. Current changes are more focused on the polymeric matrix of the material, principally to develop systems with reduced polymerization shrinkage, and perhaps more importantly, reduced polymerization shrinkage stress, and to make them self adhesive to tooth structure. (Kalpdohr & Moszner 2005 – Chen 2010)

B- Finishing and polishing procedures of composite.

Based on this review, the range in surface roughness of different intraoral hard surfaces was found to be wide, and the impact of dental treatments on the surface roughness is material-dependent. Some clinical techniques result in a very smooth surface (compressing of composites against matrices), whereas others made the surface rather rough (application of hand instruments on gold). These findings indicated that every