Evaluation of Serum Zinc Level in Patients with Persistent Plantar Warts

Chesis

Submitted for partial fulfilment of Master Degree in Dermatology and Venereology

Presented by

Dina Farouk Mohamed

(M. B. B.Ch.)

Faculty of Medicine - MisrUniversity for Science and Technology

Under Supervision of

Prof.NehalMohamed Zuel Fakkar

Prof. of Dermatology and Venereology Faculty of Medicine–Ain Shams University

Dr. Nermeen Samy Abdel Fattah

Associate Professor of Dermatology and Venereology Faculty of Medicine–Ain Shams University

Dr. El Sayed El Okda

Associate Professor of Occupational Health and Environment Faculty of Medicine–Ain Shams University

Faculty of Medicine Ain Shams University 2014

List of Contents

Subject	Page No.
List of Abbreviation	i
List of Tables	iv
List Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature:	
hapter 1: Warts	4
hapter 2: Zinc	
Subjects and Methods	50
Results	56
Discussion	73
Conclusion	78
Recommendations	79
Summary	80
References	82
Arabic Summary	

List of Abbreviations

Abbrev.		Full term
AE	:	Acrodermatitis enteropathica
ANOVA	:	One way analysis of variance
APCs	:	Antigen presenting cells
CD	:	Cluster of differentiation
CO_2	:	Carbon dioxide
DCs	:	Dendritic cells
DNA	•	Deoxyribonucleic acid
\mathbf{E}	•	Early region
Er:YAG	:	Erbium-doped:Yttrium/Aluminum/Garnet
EV	:	Epidermodysplasia verruciformis
GAGs	:	Glycosaminoglycans
HPV	:	Human papilloma virus
HSPGs	:	Heparan sulfate proteoglycans
hzip4	:	Human zinc/iron-regulated transporter-like protein 4
IFN	:	Interferon
IL	:	Interleukin
Kb	:	Kilobases
KTP	:	Potassium-titanyl-phosphate
L	:	Late region
LPS	:	Lipolysaccaride
m/s^2	:	Metre per second squared
mg/l	:	Milligram/liter

)

List of Abbreviations

Full term Abbrev. Milligrams per millilitres mg/ml : Millimole per litter Mmol/l : Mole per liter mol/l : Messenger ribonucleic acid **mRNA** : Myeloid differentiation factor 88 Myd88 : Nuclear factorkB NF-kB : Natural killer NK : Open reading frames **ORFs** : Probability value P value : Protein 53 p53 **PDL** : Pulsed dye laser pRB : Retinoblastoma protein : Retinol binding protein **RBP** RNA Ribonucleic acid SCD Sickle cell disease SD : Standard deviation : Statistical package for social science **SPSS** : T-helper Th : Tumor necrosis factor TNF : Toll/interleukin–1 receptor domain containing TRIF adapter-inducing interferon -β : Upstream regulatory region URR : United States US

List of Abbreviations

Abbrev.	Full term
Xg	: Gravity by acceleration
ZIP-6	: Zrt/irt like protein 6
ZnT	: Zinc transporter
α	: Alpha
β	: Beta
γ	: Gamma
μg/dl	: Micrograms per decilitre
μg/l	: Microgram per litre
μmol	: Micromole per litre
5-Br-APS	: (5-Bromo-2-pyridiylazo)-5-[N-n-propyl-N-(3-sulfopropyl) amino] phenol

List of Tables

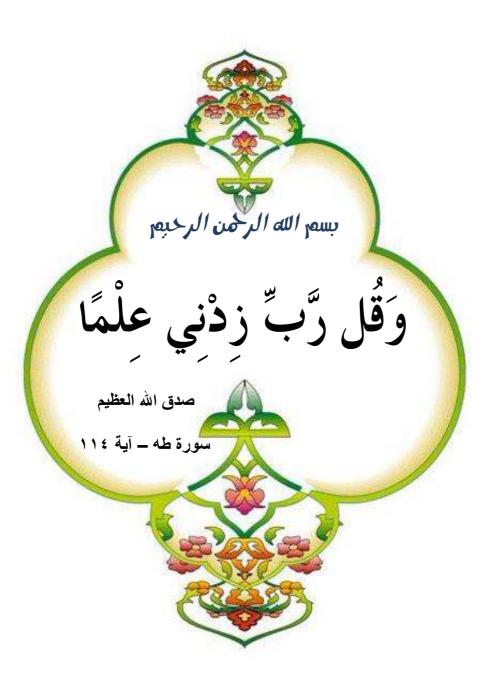
Eable N	o. Eitle	Page No.
Table (1):	Diseases and associated HPV subtypes	19
Table (2):	Zinc rich foods	33
Table(3):	Comparison between patients and regarding age and sex	
Table (4):	Comparison between patients and regarding serum zinc levels	
Table (5):	Comparison between subgroup subgroup 2 regarding serum zinc leve	
Table (6):	Comparison between subgroup subgroup 2 regarding number of war	
Table (7):	Comparison between subgroup subgroup 2 regarding progression of	
Table (8):	Comparison between subgroup subgroup 2 regarding pain	
Table (9):	Comparison between subgroup subgroup 2 regarding previous treatm	
Table (10):	Comparison between subgroup controls regarding serum zinc levels	
Table (11):	Comparison between subgroup 2 and regarding serum zinc levels	
Table (12):	Relation between serum zinc levels studied parameters in subgroup 1	
Table (13):	Relation between serum zinc levels studied parameters in subgroup 2	

_

Table (14):	Comparison between the three studi regarding serum zinc levels	• 1	
List of Tables (Cont)			
Eable N	o. Eitle	Page No.	
Table (15):	Correlations between age of patient duration and serum zinc levels a patients	mong all	
Table (16):	Correlations between age of patient duration, number of warts and serum among subgroup 1	zinc levels	
Table (17):	Correlations between age of patient duration and serum zinc level subgroup 2	s among	
Table (18):	Linear regression model to study the independent factors on serum zi among all patients	nc levels	

List of Figures

Figure N	o. Eitle	Page	No.
Figure (1):	Histopathological picture ofdeep wart:		
Figure (2):	Comparison between patients and regarding serum zinc levels		
Figure (3):	Comparison between subgroup subgroup 2 regarding serum zinc leve		
Figure (4):	Comparison between subgroup subgroup 2 regarding number of war		
Figure (5):	Comparison between subgroup 1 and 2 regarding progression of warts		
Figure (6):	Comparison between subgroup subgroup 2 regarding pain		
Figure (7):	Comparison between subgroup subgroup 2 regarding previous treatm		
Figure (8):	Comparison between subgroup 1 and regarding serum zinc levels		
Figure (9):	Comparison between subgroup 2 and regarding serum zinc levels		
Figure (10):	Comparisonbetween the three studie regarding serum zinc levels		
Figure (11):	Correlation between duration of dis serum zinc levels among all patients.		


بِسْمِ اللهِ الرّحمَنِ الرّحيمِ (رَبِّ أُورِ عنِي أَن أَشْكُرَ نِعمَثَكَ البِّي أَنْعَمْتَ عَلَيَّ و على والديَّ و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَدْخِلْنِي بِرَحْمَتِكَ فِي عبادِكَ الصَّالِحِينَ) عبادِكَ الصَّالِحِينَ)

النمل.. اية رقم ١٩

بسم الله الرحن الرحبم

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلْمَ لَنَا إِلاَّ مَا عَلَمْ الْحَكِيمُ عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم سورة البقرة – آية ٣

First of all I wish to express my thanks to **ALLAH**, to the Most Merciful and the Most Grateful for His generous care throughout my life.

I cannot find enough words to express my deep feelings towards my supervisors for their great helps and guidance in producing this thesis.

My gratitude and deep appreciation to **Prof. Nehal Mohamed Zuel Fakkar,** Prof. of Dermatology and Venereology, Faculty of
Medicine – Ain Shams University, for her guidance, valuable
advice, continuous encouragement and close supervision I have the
honor to complete this work under her supervision.

I would also to extend my thanks and gratitude to **Dr.**Nermeen Samy Abdel Fattah, Associate Professor of Dermatologyand Venereology, Faculty of Medicine – Ain Shams University, for her great efforts and help during the whole work; no wards can express my deep gratefulness.

I would like to express my sincere thanks and highest appreciation to Dr. El Sayed El Okda, Associate Professor of Occupational Health and Environment, Faculty of Medicine – Ain Shams University, for his support, wise advice and precious time he had offered me.

Lastly I would like to express my thanks to everyone who helped me during work and i never forget the patients to whom we owe a lot.

INTRODUCTION

Caused by Human Papilloma Viruses (HPV). Viral warts are common afflictions, affecting mostly children and young adults (Silverberg, 2004; Hutchinson and Klein, 2008).

Although humoral and cell mediated immune responsesare cellular against viral molecular sufficient warts, and mechanisms of the immunity against the virus notcompletely established (Frazer, 2009). Once the infection isestablished, HPV has several mechanisms to avoid the immune system. Despite viral immune evasion, the immune system effectively clears most HPV infections (Stanley, 2006).

Zinc is known to play a central role in the immune system, and zinc-deficient persons experience increased susceptibility a variety of pathogens (Shankar and Prasad, 1998; Bari et al., 2004; Hamer et al., 2009). Furthermore, the activities of many immuno-stimulants frequently used in immunologic are influenced by zinc concentration (Ibs and Rink, 2003). However, the immunity is delicately regulated by zinc and decreased levels result in a disturbed immune function (Rink and Gabriel, 2001).