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Abstract

In recent years, the rapid developments in the genetics field have
generated a huge amount of biological data. Microarray gene expression data
Is an important instance of biological data. It has high dimensionality with a
small number of samples accompanied with large number of genes.
Therefore, using machine learning techniques for knowledge discovery in
such data become a rich area for researchers. The mining phase is usually
divided into two steps: the gene selection (feature reduction) and the

classification process.

Gene selection is a process of finding the genes most strongly related to
a particular class. The benefit of this process is to reduce not only
dimensionality but also, the danger of presence of irrelevant genes that affect
the classification process. Many machine learning approaches are used feature
reduction but the study focuses on t-test and class separability. In the other
hand, classification is an important data-mining problem that has a wide range
of applications. Classification concerns learning that classifies data into the
predetermined categories. It is applied to discriminate diseases or to predict
outcomes based on gene expression patterns and perhaps even identify the
best treatment for given genetic signature. Many machine learning approaches
are used classification. In this study, it focuses on Support vector machine and

k-nearest neighbor.

Support Vector Machine (SVM) plays a very important role in the data
mining classification problem. The structure of SVM depends on kernel
functions, where the most commonly used are liner and polynomial. If there

are more than two classes in the data set, binary SVMs are not sufficient to



solve the whole problem. To solve multi-class classification problems, the
whole problem should be converted into a number of binary classification
problems. Usually, there are two approaches. One is the “one against all”

scheme and the other is the “one against one” scheme.

On the other hand, K-Nearest Neighbor shows an outstanding
performance in many cases of classifying microarray gene expression. For
using KNN technique three key elements are essential, (1) a set of data for
training, (2) a group of labels for the training data (identifying the class of
each data entry) and (3) the value of K for deciding the number of nearest

neighbors.

This study proposes a new hybrid reduction approach for the promotion
of the cancer classification accuracy that uses two gene selection techniques
to confirm the most informative genes and to discard irrelevant genes that
affect the classification accuracy. Actually, it applied two machine learning
(ML) gene ranking technigues (T-test and Class Separability (CS)) and two
ML classifiers; K-nearest neighbor (KNN) and support vector machine
(SVM); for exploring and analyzing the process of mining microarray gene
expression profiles. In addition, based on these analyses we proposed a hybrid

ML reduction approach to enhance the classification accuracy.

It has tested and validated the ML approaches on four public
microarray databases; Lymphoma, Leukemia, Small Round Blue Cell Tumors
(SRBCT) and Lung Cancer datasets. The experimental results show that the
hybrid system achieves enhancement in the classification accuracy better than
the SVM and KNN techniques alone. Also, selecting genes from the whole
data is better than selecting it from the training data. But excluding the testing
samples from the classifier building process, make it more accurately to

compare the performance and it make a validation for the system.
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Chapter 1

Introduction

1.1 Problem Definition

Creatures consist of organisms and every organism carries the same genetic
information. This genetic information is represented in the form of genes,
where only a subset of these genes is active or expressed. Bioinformatics, or
computational biology, is the interdisciplinary science of interpreting
biological data using information technology and computer science [1]. The
broad use of machine learning techniques and their applicability in the
different areas of bioinformatics reported a success resolving biological
problems because it facilitates the process of analysing such data sets and
extracting the important hidden knowledge. The cancer classification based

on the microarray data is one example of this type of analysis.

Simply, Microarray gene expression data refers to such repositories of
gene information that made the technology of modern biological research. Its
goal is to understand the regulatory mechanism that governs protein synthesis
and activity of genes. All the cells in an organism carries equal number of
genes yet their protein synthesis can be different due to regulation. Protein
synthesis is regulated by control mechanisms at different stages [2]:

1) Transcription
2) RNA splicing
3) Translation

4) post transitional modifications



Furthermore, analyzing the gene with respect to whether and to what
degree they are expressed can help characterize and understand their
functions. It can further be analyzed how the activation level of genes changes
under different conditions such as for specific diseases (e.g. cancers are
generally caused by abnormalities in the genetic material of the transformed
cells or change in their activation or function) [3]. Actually, microarray
represents a powerful tool in biomedical discoveries and harnessing the
potential of this technology depends on the development of appropriate

mining approaches [4][5][6].

Microarray techniques provide a plat form where one can measure the
expression levels of thousands of genes in hundreds of different conditions.
Actually, there is a high redundancy in microarray data and numerous genes
contain inappropriate information for precise classification of diseases or
phenotypes [7]. Therefore, the amount of data generated by this technology

presents a challenge for the biologists to carry out analysis [8].

The mining phase in the knowledge discovery process can be defined
as the process of discovering interesting and unknown patterns from large
amounts of data stored in information repositories [9][10]. The mining task
could be one of regression, summarization, clustering and classification [9].
In microarray data, classification is momentously necessary for cancer
diagnosis and treatment. Specially, in classification analysis of microarray
data; where the data has high dimensionally; gene selection is one of the
critical aspects, where the objective is reaching an efficient gene selection
approach that can drastically ease computational burden of the subsequent
classification task, and can yield a much smaller and more compact gene set

without the loss of classification accuracy.



