

Evaluating the Use of Modern Technologies and Techniques to Improve Existing Cadastre System in Egypt

BY

Eng. Ali Ezzeldin Zobarei

M.Sc. Civil Engineering Ain Shams University Cairo, Egypt, (2001)

A Thesis Submitted in Partial Fulfillment for the Requirement of the **Degree of Doctor of philosophy in Civil Engineering** (Public Works Department - Surveying)

Supervised By

Prof. Dr. Adel A. Y. Haggag

Professor of Surveying and Photogrammetry Ain Shams University

Prof. Dr. Ibrahim F. M. Shaker

Professor of Surveying and Photogrammetry Ain Shams University Dr. Mohamed F. H. El-Maghraby

Associated Professor of Surveying and Geodesy Ain Shams University

Cairo – Egypt 2005

Evaluating the Use of Modern Technologies and Techniques to Improve Existing Cadastre System in Egypt

BY

Eng. Ali Ezzeldin Zobarei

M.Sc. CIVIL ENGINEERING AIN SHAMS UNIVERSITY CAIRO, EGYPT, (2001)

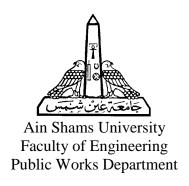
A Thesis Submitted in
Partial Fulfillment for the Requirement of the

Degree of Doctor of philosophy in Civil Engineering

(Public Works Department - Surveying)

Supervised By

Prof. Dr. Adel A. Y. Haggag


Professor of
Surveying and Photogrammetry
Ain Shams University

Prof. Dr. Ibrahim F. M. Shaker

Professor of Surveying and Photogrammetry Ain Shams University Dr. Mohamed F. H. El-Maghraby

Associated Professor of Surveying and Geodesy Ain Shams University

Cairo – Egypt 2005

Approval Sheet

Thesis Titl	e: Evaluating the Use of Modern Technology Techniques to Improve Existing Cadas	
Prepared B	By: Eng. Ali Ezzeldin Zobarei	
Degree:	Degree of Doctor of Philosophy in Civi (Public Works - Surveying)	l Engineering
Examine	ers Committee:	
1- Prof.	Dr. pMohamed Sh. A. Elghazali	
	ssor of Surveying and Photogrammetry University	
Profes	Dr. Abdel - Hadi S. Abdel - Aal ssor of Surveying and Geodesy hams University	
Profes	Dr. Adel A. Y. Haggag ssor of Surveying and Photogrammetry hams University	
4. Prof.	Dr. Ibrahim F. M. Shaker	

Professor of Surveying and Photogrammetry

Ain Shams University

STATEMENT

The dissertation is submitted to Ain Shams University for the

Degree of Doctor of philosophy in Civil Engineering (Public Works

Department - Surveying)

The work included in this thesis was carried out by the author in

the Department of Public Works, Faculty of Engineering, Ain Shams

University from December 2001 to July 2005.

No part of this thesis has been submitted for a degree of a

qualification of any other University Institution.

Date:

/ / 2005

Name: Ali Ezzeldin Zobarei

Signature:

ABSTRACT

Cadastre systems which are a subset of spatial information systems, aim at identifying and maintaining legal boundaries of properties, also provide information related to nature, size, and ownership of land use and elements. The fundamental structure for collecting, storing, and retrieving information in cadastre systems is the cadastral parcel.

It will not be possible to design a global cadastral system suitable for any case and all circumstances. This is true specially when considering the socio-economic basic conditions, which are different from country to country. The different forms of land tenure and the legal situation in this field give the framework for cadastral systems, and how to carry out its technical features.

The present form of cadastral system in Egypt, usually suffers some deficiencies such as the limiting capabilities for providing data, database updating; the very slow rate, with a lot of routine in carrying out the cadastral functions, tasks, and their costs. So, considerable time is needed in order to access, locate, retrieve and update the information that stored in traditional forms of cadastre system database, as well as, the data-updating process is so difficult. In addition, like most developing countries, the growth of population, and the rapid developments within society, are increasing the demand on urban and rural land, and highlighting the urgent need for current, relevant, and easily accessible information.

The main objective of this thesis is to make optimal use of some modern technologies and techniques of computer, surveying, and information systems science, to improve the present form of cadastral system in Egypt and develop it towards an automated cadastral information system (CIS), which will be capable of importing, storing, and providing fast accessing, retrieving, handling, and updating of large amounts of data included in this CIS databases, that related to parcels, land-uses, owners and ownership, and other spatial features (buildings, roads, and utilities) with an efficient, easy, and fast ass possible manner, which leads to save the public and private money, time, and effort, as opposed to traditional present form of cadastral system.

Consequently, the following five main sub-objectives were achieved as a work-plan for establishing the sought CIS. So, the cadastral parcel definition were developed to be suitable for our status in Egypt, then, a new main-rules were defined to control the relationship between cadastral-parcel and other spatial-features types (such as: land-uses, buildings, roads, utilities-types), in addition, the concept of Parcelidentifier (Parcel_id) was defined according to the administrative subdivision levels in both rural and urban sectors in Egypt. Also, the spatial and non-spatial data we need to store in our developed CIS database were identified, collected, and imported from different data sources. Then, based on the designed key rules, the CIS-relational database (non-spatial database) were designed and established. After that, the CIS-digital spatial (geographic) database, were built to include all CIS data-layers.

At last, a cadastral software package "CADASTRE-2" for Egyptian cadastral system status, was designed and established based on the built database to be capable of using and implementing those capabilities of the designed database for achieving most of the cadastral functions and tasks. The main functions and tasks of the developed cadastral information system CIS can be summarized as:

- Access into the CIS relational-database and explore, query, process, retrieve and display its data with an efficient manner.
- Search for different data types by a piece of available information according to the different available spatial features, owners, and ownerships, in order to display the cadastral system database data.
- Creating reports with spatial and non-spatial data related to parcels, land use, utilities, buildings, and apartments.
- Perform all types of updating such as: "Add New", "Delete", and "Edit" for attributes-data and/or related owners, ownerships, parcels and other available spatial features as easy, and fast as possible.
- Implement all types of cadastral transaction that are applied on ownerships related to parcels, owners, and all spatial features in the most safe, accurate and automated manner possible.
- The most important transactions are: (ownership transfer (Selling, Buying, gifts ...etc), rights changing, subdivision of spatial feature, and merging several spatial features).

Acknowledgments

"Thanks to God, the master of the world, most gracious, most merciful".

I would like to express my sincere gratitude and deep respect to my supervisors, Prof. **Dr. Adel A. Y. Haggag**, Prof. **Dr. Ibrahim F. M. Shaker** and Assoc. Prof. **Dr. Mohamed F. H. El-Maghraby** for their unlimited encouragement and helpful advises, continuous kind guidance, fruitful discussions, and their active and valuable suggestions throughout preparing this study.

I also, wish to thank all staff of Ain Shams University survey group for their great cooperation through this study.

Finally, but firstly in my heart, I would like to give my great and unlimited thanks to my **parents** and my **wife**, for their support, continuous encouragement, and careful care all the time, during the preparation of this thesis.

Table of Contents

	Abstract	iv
	Acknowledgement	vii
	Table of Contents	viii
	List of Figures.	xii
	List of Tables.	xvi
1	I. Introduction	1
	1.1 motivations behind the present study	7
	1.2 objectives of the current research	8
	1.3 methodology of investigation	9
	1.4 scope of presentation of the thesis	13
2	2. The modern cadastre concept	17
	2.1 The cadastral concept	18
	2.2 Land registration, cadastre and its interaction	21
	2.3 Cadastral issues.	22
	2.4 The justification of cadastral development	24
	2.5 Main components of a cadastre system	27
	2.5.1 Graphical components	28
	2.5.2 Textual components.	29
	2.5.3 Parcel identifier (Parcel_id)	31
	2.6 study the existing cadastral system in Egypt)	31
	2.6.1 Some definitions connecting with the cadastre system	
	in Egypt	31
	2.6.1.1 Parcel and Hod (حوض) definitions	32

Table of Contents - Continued

2.6.1.2 Cadastral maps	32
2.6.1.3 Land registers.	33
2.6.2 Historical background of cadastral system in Egypt	36
2.6.3 Present status of cadastral surveying in Egypt	39
3. Automating the cadastral system spatial and non-spatial	
databases	42
3.1 The used commercial software modules: overview and	l
applicability	42
3.1.1 Microsoft access software.	43
3.1.1.1 Definition of access databases	45
3.1.1.2 Database objects	46
3.1.2 ArcGIS desktop software	48
3.1.2.1 Data sources and associated items	50
3.1.2.2 Working with map and data-sources	56
3.1.2.3 Working with tables	59
3.1.2.4 Working with raster.	61
3.1.2.5 Map and coordinate systems	64
3.2 Building the CIS relational database	66
3.2.1 Designing the cadastral information system relational-	-
database.	66
3.2.1.1 Determine the purpose of the database	67
3.2.1.2 Determine the fields (facts) we need in the	e
database	68
3.2.1.3 Determine the tables we need in the database	68
3.2.1.4 Identify the fields with unique values in each	1
record	69

Table of Contents - Continued

3.2.1.5 Determine the relationships between tables	70
3.2.2 Creating the cadastre system database	71
3.2.2.1 Create database file and designed tables	71
3.2.2.2 Refine the design	72
3.2.2.3 Enter data and create other database objects	72
3.3 Build the CIS digital geographic-database	73
3.3.1 Design the geographic database.	73
3.3.1.1 Identify geographic features and their attributes.	74
3.3.1.2 Organize the data layers.	74
3.3.1.3 Defining attributes.	76
3.3.1.4 Coordinate registration.	77
3.3.2 Data automation	77
3.3.2.1 Get the spatial data into the geographic-	78
database	70
3.3.2.2 Get attributes data into computer	80
4. Establishment of the key rules of the developed CIS And	
developing a cadastral software package (cadastre_2)	82
4.1 Establishing key rules of the developed CIS	82
4.1.1 Developing the cadastral parcel concept	83
4.1.2 Designing the main rules of the developed CIS	84
4.1.3 Redefining the parcel identifier (parcel_id)	86
4.2 Developing cadastre-2 software package	88
4.2.1 Highlights of visual basic programming language	89
4.2.2 Objectives and capabilities of the cadastral software	
package CADASTRE-2	90

Table of Contents - Continued

4.2.3 Essential flow chart of the developed cadastral	
software package CADASTRE-2	91
5. Practical implementation of the Developed cadastral	
information system in Egypt	117
5.1 Used data: sources and acquisition	118
5.2 Building the CIS relational database	126
5.3 Building the CIS digital spatial database	138
5.3.1 Design the geographic database	138
5.3.2 Data automation.	139
5.4 Practical Applications of the Established Cadastral Software	
Package "CADASTRE-2" in Cadastral Activities	148
5.4.1 The "Parcels" Feature Type	149
5.4.1.1 Search/Explore Functions	149
5.4.1.2 "Add New/Edit Data" Functions	158
5.4.1.3 "Transfer Ownership" Function	176
5.4.1.4 "Divide Parcel" Function	178
5.4.1.5 "Merge Parcel" Function	179
6. Summary, Conclusions and Recommendations	185
6.1 Summary	186
6.2 Conclusions	189
6.3 Recommendations	192
References	194

List of Tables

<u>No.</u>	<u>Title</u>	Page
3.1.	Hod Table (the Hod_id field is the primary key)	70
3.2.	Parcels Table (the Hod_id field is the foreign key and the parcel_id	
	field is the primary key)	70
3.3.	Lest of some spatial features and related attributes	74
4.1.	The Egyptian administrative subdivisions	86
5.1.	The five levels of Egyptian administrative subdivisions, relative to	
	both the urban and rural sectors	118
5.2.	Initial data types that available for each administrative	
	subdivisions type	119
5.3.	Sample of (provinces) cities included in Egypt	119
5.4.	Sample of included (districts) markaz(s) in Cairo (province)	
	city	119
5.5.	Sample of (towns) villages included in (عين شمس) Ain-Shams	
	(district) markaz	120
5.6.	Sample of (urban blocks) hods included in Elzahraa (الزهراء)	
	(Town) Village	120
5.7.	Sample of parcels included in some (urban blocks) hods relative to	
	Elzahraa (الزهراء) (Town) Village	120
5.8.	Feature attribute tables in the spatial database	121
5.9.	Sample of land use types, and cost per feddan for each type	121
5.10). Attribute data that available for each owner	122
5.11	. Types of ownership relative to the available spatial features	122
5.12	2. Ownership data relative to the available spatial features	122
5.13	3. Sample of available building type	123

List of Tables - Continued

<u>No.</u>	<u>Title</u>	Page
5.14.	Sample of attribute data relative to living-building	123
5.15.	Sample of living-Apartment attribute data	123
5.16.	Sample of attribute data relative to educational-building	124
5.17.	Sample of available roads types	124
5.18.	Sample of roads attributes	124
5.19.	Sample of utilities types	125
5.20.	Sample of utility-features attributes	125
5.21.	City (province) table as stored in database	127
5.22.	Markaz (district) table as stored in database	127
5.23.	Parcels (parcel_poly) table. Samples of parcels included in	
	Belant hod (حوض بلنط) as stored in database	128
5.24.	Samples of building types as stored in database	128
5.25.	Living-building data as stored in database	128
5.26.	Apartment attributes as stored in database	129
5.27.	Educational-building data as stored in database	129
5.28.	Educational classes stored in database	129
5.29.	Educational property types stored in database	129
5.30.	Samples of Roads attributes as stored in database	130
5.31.	Sample of land use types and cost as stored in database	130
5.32.	Samples of utilities types as stored in database	130
5.33.	Samples of utility features as stored in database	132
5.34.	Feature attributes as stored in database	132
5.35.	Parcel feature and related attributes	138

List of Figures

No.	<u>Title</u> <u>Page</u>	
1.1.	Developed cadastral information system-Work plan	1
2.1.	The cadastral concept	20
2.2.	A part of a cadastral map.	28
2.3.	The early Egyptian surveyors at work	37
3.1.	Previewing a CAD dataset	54
3.2.	Organizing data layers. After [ESRI, 1990]	75
3.3.	Coding and looking up the attributes. After [ESRI, 1990]	77
3.4.	Representing points, lines, and areas on a x, y plane	79
4.1.	Developed definition of the cadastral parcel	84
4.2.	The designed Key rules of the developed CIS	85
4.3.	Essential flow chart of the cadastral software package	
	CADASTRE-2	92
5.1.	The relationships between levels of administrative subdivisions	
	tables.	135
5.2.	The relationships between the parcels table and the ownership and	
	owner tables	135
5.3.	The relationships between parcel and other spatial features	136
5.4.	The relationships between parcels and roads	136
5.5.	The relationships between the parcels table (Parcel_poly), the living	
	building table (build_11), the apartments table (build_11_flat),	
	the Owner table, and the Ownership of the living building and	
	apartments tables	137