

Optimal Solid Wastes Mixture for the Production of Solid Fuel

A Thesis Submitted To Faculty of Engineering Ain Shams University for the Fulfillment of the Requirements of M.Sc. Degree in Civil Engineering

Prepared by

Eng. Maged Abdallah Hussieny Mahmoud

B.Sc. Civil Engineering, June 2012 Faculty of Engineering, Ain Shams University – Cairo, Egypt

Supervisors

Prof. Dr. Mohamed Hassan Abdel-Razik

Professor of Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Ahmed Hassan Gaber Hamoda

Professor of Chemical Engineering Faculty of Engineering, Cairo University, Cairo, Egypt

Dr. Sherien Ali Elagroudy

Associate Professor of Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

2017

Dedication

This thesis is dedicated to those who contributed to educating, raising and supporting me to be able to accomplish in this picture.

A special dedication to

MY SUPPORTIVE PARENTS

and to

My wonderful Sisters and Relatives

and finally special dedication to

MY LOVELY WIFE AND HER MOTHER

for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from October 2013 to December 2016.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2017

Signature: - -----

Name: - Maged Abdallah Hussieny Mahmoud

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

I would like to express my gratefulness to *Prof Dr. Mohamed Hassan Abdelrazik* Professor of Environmental Engineering Faculty of Engineering, Ain Shams University for providing me a chance to pursue my Masters degree.

It is with immense gratitude that I acknowledge the support and help of *Prof Dr. Ahmed Hassan Gaber Hamouda* Professor of Chemical Engineering Faculty of Engineering, Cairo University for his efforts and true encouragement

Also, I wish to express my sincere gratitude for *Dr. Sherien Ali Elagroudy* for her insightful comments and constructive suggestions. Her enthusiastic guidance and generous support are greatly appreciated.

Last but not least, I wish to thank *My Parents, My Sisters and My Wife* to whom this thesis is dedicated to. They tried to help me in every possible means. Their unfailing love and support have been my source of strength with which I am able to pass through times of doubts and despair and continue my pursuit of truth through failures.

ABSTRACT

Name: Maged Abdallah Hussieny Mahmoud

Title: Optimal Solid Wastes Mixture for the Production of Solid Fuel

Faculty: Faculty of Engineering, Ain Shams University

Specially: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract:-

Municipal Solid Waste (MSW) in Egypt is generated in huge amounts and has become one of the most serious current environmental problems. Egypt is suffering from waste disposal problems and fuel shortages. In a way to partially solve both waste and energy problems, some types of waste can be utilized as alternative fuels (AFs) in energy intensive industries such as cement industry. With limited fossil fuel resources and high energy costs combined with the fight against climate change and mismanagement of wastes, AF represents a real substitution to conventional fuels. This study aims at the determination of optimum mix of non-hazardous MSW to be utilized as AF.

Survey on different types of waste in the Egyptian market, their availability and applicability to produce AF is conducted, and eight SW materials are selected: rice straw, cotton stalk, olive pomace oil, used tires, wood, paper, plastics, and dried digested sludge. Waste analysis is carried out on each type of waste to determine their characteristics: calorific value (CV), moisture content (MC), density, and gas emissions.

The optimum AF mix is determined based on technical and financial evaluations. Technical evaluation is based on the maximization of CV, and minimization of MC, density, and gas emissions; whereas financial evaluation is based on the market price of SW material. The optimal mix is found to be: rice straw (22.36%), wood (19.04%), plastics (24.25%), cotton stalks (17.90%), and used tires (16.45%). The optimum mix is found to have CV of 5353 cal/g, moisture content of 1.90%, and density of 330.70 kg/m3.

Economic feasibility study is conducted for an AF plant with production capacity of 50 ton/d. The study considered capital, operation and maintenance costs with NPV of 38,647,565 EGP. At a proposed selling price of 1500 EGP/ton, the plant can achieve IRR of 29%, B/C ratio of 1.163, and payback period of 4 years.

Supervisors

Prof. Dr. Mohamed Hassan Abdelrazik

Professor of Environmental Engineering, Ain Shams University

Prof. Dr. Ahmed Hassan Gaber Hamouda

Professor of Chemical Engineering, Cairo University

Dr. Sherien Ali Elagroudy

Associate Professor of Environmental Engineering, Ain Shams University

Key Words:

Municipal Solid Waste, Solid Fuel, Solid Recovered Fuel, Refuse Derived Fuel, Cement Manufacturing, Economic Feasibility Study

TABLE OF CONTENTS

LIST OF FIGURES LIST OF TABLES		xii xii
LIST OF		XV
ABBREVIATIONS CHAPTER [1]		1
1.1	BACKGROUND	1
1.2.	PROBLEM STATEMENT	2
1.3.	OBJECTIVES	3
1.4.	METHODOLOGY	3
1.5.	THESIS OUTLINE	4
CHAPTER [2]	THESIS OUTLINE	5
2.1.	GENERAL	5
2.2.	WORLD ENERGY CONSUMPTION	5
2.3.	ENERGY OVERVIEW IN EGYPT	6
2.3.1.	OIL	7
2.3.2.	NATURAL GAS	7
2.4.	RENEWABLE ENERGY SOURCES	8
2.5.	WORLD CEMENT PRODUCTION	8
2.6.	EGYPT CEMENT PRODUCTION	0 11
2.7.	ENERGY PROBLEM	12
2.8.	THE COAL OPTION	14
2.0.	OVERVIEW OF INTERNATIONAL EXPERIENCE	
2.9.	ON ALTERNATIVE FUELS	14
2.9.1.	ALTERNATIVE FUELS USED IN THE CEMENT INDUSTRY	15
2.10.	OVERVIEW OF EGYPT'S EXPERIENCE IN ALTE RNATIVE FUELS	17
2.11.	ADVANTAGES AND DISADVANTAGES OF AF	19
2.12.	MUNICIPAL SOLID WASTE IN EGYPT	19
2.12.1.	WASTE GENERATION	19
2.12.2.	MUNICIPAL SOLID WASTE COMPOSITION	21
2.12.3.	MUNICIPAL SOLID WASTE COLLECTION	22
2.13.	WASTE TO ENERGY TECHNOLOGIES	22
2.13.1.	THERMAL TECHNOLOGY	23

A)	COMBUSTION	23
B)	PYROLYSIS AND THERMAL GASIFICATION	23
C)	PLASMA-ARC GASIFICATION	23
2.13.2.	BIOLOGICAL TREATMENT	24
A)	METHANE CAPTURE - LANDFILL GAS.	24
B)	BIOGAS PLANTS.	25
C)	FERMENTATION.	25
2.12.2	MECHANICAL BIOLOGICAL TREATMENT	25
2.13.3.	ALTERNATIVES	25
2.13.3.1.	AIM OF MBT PROCESSES	25
2.13.3.2.	PHYSICAL TECHNOLOGY	29
2.14.	SOLID RECOVERED FUEL	30
2.14.1.	SRF CLASSIFICATIONS	30
2.14.2.	THE BENEFITS OF SRF	31
2.14.3.	APPLICATION OF SRF	33
2.15.	PRODUCTION OF ALTERNATIVE FUEL	34
2.15.1.	RECEIVING AREA (BUNKER)	34
2.15.2.	PRE-SORTING	35
2.15.3.	FEEDING EQUIPMENT	35
2.15.4.	COMMINUTION (SIZE REDUCTION)	35
2.15.5.	METAL SEPARATION	36
A)	SEPARATION OF FERROUS METALS	36
B)	OVERBAND MAGNETIC SEPARATOR	36
C)	MAGNETIC DRUM SEPARATOR	36
D)	NON-FERROUS METALS SEPARATION WITH	36
D)	EDDY CURRENT SEPARATOR	30
2.15.6.	CLASSIFICATION	37
A)	DRUM SCREENS	37
B)	FLIP-FLOP SCREENS	38
2.15.7.	AIR CLASSIFICATION	38
2.15.8.	NEAR INFRARED SPECTROSCOPY	38
2.15.9.	AUTOMATIC PICKING	39
2.15.10.	COMPACTING (PELLETISING)	39
2.15.11.	STORAGE AREA	39
CHAPTER [3]		41
3.1.	INTRODUCTION	41
3.2.	SELECTION OF WASTE TYPES	41
3.3.	CHARACTERISTICS OF SELECTED WASTES	43
3.3.1.	RICE STRAW	43

3.3.2.	OLIVE POMACE OIL	43
3.3.3.	WOOD	43
3.3.4.	PLASTIC	44
3.3.5.	DRIED DIGESTED SLUDGE	44
3.3.6.	COTTON STALKS	44
3.3.7.	PAPER WASTE	44
3.3.8.	USED TIRES	45
3.4.	WASTE ANALYSIS	45
3.4.1.	CHEMICAL ANALYSIS	45
3.4.1.1.	PROXIMATE ANALYSIS	45
3.4.1.2.	ULTIMATE ANALYSIS	46
2 4 1 2	ENERGY CONTENT (CALORIFIC VALUE) -	1.0
3.4.1.3.	(ASTM ABBE)	46
3.4.2.	PHYSICAL ANALYSIS	46
3.5.	CRITERIA OF ALTERNATIVE FUEL	46
3.6.	MIXING CRITERIA	47
3.7.	GAS EMISSIONS CALCULATIONS	48
3.8.	PLANT DESIGN	49
3.9.	ECONOMIC ANALYSIS	49
3.9.1.	COST STREAM	49
3.9.2.	BENEFIT STREAM	50
3.9.3.	ECONOMIC MEASURES	50
CHAPTER [4]		52
4.1.	INTRODUCTION	52
4.2.	SOLID WASTE MATERIALS ANALYSIS	52
4.2.1.	CALORIFIC VALUE	52
A)	LAB MEASUREMENT	52
B)	USING DULONG EQUATION:	53
C)	DATA FROM LITERATURE REVIEW	53
4.2.2.	MOISTURE CONTENT	54
4.2.3.	DENSITY	54
4.3.	SOLID WASTE MATERIALS MIXING CRITERIA	55
4.4.	NO MIX RANKING	56
4.5.	CANDIDATE SOLID WASTE MIXES	56
	TECHNICAL EVALUATION OF CANDIDATE	
4.6.	MIXES	58
4.7.	FINANCIAL EVALUATION	61
4.8.	OVERALL EVALUATION AND SELECTION OF	
	OPTIMUM MIX	62

CHAPTER [5]		69
5.1.	INTRODUCTION	69
5.2.	ALTERNATIVE FUEL PRODUCTION BLOCK	69
3.2.	FLOW DIAGRAM (BFD)	09
5.3.	PROCESS DESCRIPTION	69
5.4.	PROCESS FLOW DIAGRAM (PFD)	71
5.5.	MASS BALANCE OF ALTERNATIVE FUEL PRODUCTION	71
5.6.	ENERGY BALANCE OF ALTERNATIVE FUEL PRODUCTION	71
5.7.	EQUIPMENT USED IN ALTERNATIVE FUEL PRODUCTION PLANT DESIGN	72
A)	SHREDDER	72
B)	ROTATING MIXER	72
C)	COOLER	72
D)	PELLET MILL	72
5.8.	ALTERNATIVE FUEL PRODUCTION PLANT	73
CHAPTER [6]		80
6.1.	INTRODUCTION	80
6.2.	CAPITAL COSTS	80
A)	LAND COST	80
B)	MACHINES COST	81
C)	SERVICE BUILDING COST	81
D)	SITE WORKS	81
E)	TOTAL CAPITAL COST	81
6.3.	OPERATION COST	81
A)	RAW WASTE MATERIAL	81
B)	POWER CONSUMPTION	82
C)	SALARIES	82
D)	MAINTENANCE COST	83
E)	TOTAL OPERATION COST	83
6.4.	SALES	83
6.5.	ECONOMIC MEASURES	83
CHAPTER [7]		87
7.1.	GENERAL	87
7.2.	CONCLUSION	87
7.3.	RECOMMENDATIONS AND FUTURE WORK	88
LIST OF REFERENCES		80

LIST OF FIGURES

List of Figures	
Chapter 2	
Figure 2.1: World Energy Consumption	05
Figure 2.2: Egypt's Oil Remaining Reserves	07
Figure 2.3: Egypt's Natural Gas Reserves	07
Figure 2.4: World cement production 2013	09
Figure 2.5: Average Egyptian urban municipal	
solid waste composition	21
Figure 2.6: Waste to Energy Technologies	22
Figure 2.7: An illustration of the potential Mechanical Biological	
Treatment options composition	26
Figure 2.8: The four main options of MBT	27
Figure 2.9: Option A processes	27
Figure 2.10: Option B processes	28
Figure 2.11: Option C processes	28
Figure 2.12: Option D processes	28
Figure 2.13: Physical Technologies	29
Figure (2.14a): Cascade mode	37
Figure (2.14b): Cataract mode	37
Chapter 3	
Figure 3.1: Thesis Methodology	42
Chapter 4	
Figure 4.1a: Financial Score versus Overall Score of Trial 1	63
Figure 4.1b: Financial Score versus Overall Score of Trial 2	64
Figure 4.1c: Financial Score versus Overall Score of Trial 3	65
Figure 4.1d: Financial Score versus Overall Score of Trial 4	66
Figure 4.1e: Financial Score versus Overall Score of Trial 5	67
Chapter 5	
Figure 5.1: Block Flow Diagram of Alternative Fuel Production	70
Figure 5.2: Process Flow Diagram of AF Plant	74
Figure 5.3: Receiving Area	75
Figure 5.4: Plant Layout	76
Figure 5.5: Mass Balance Flow Sheet	77
Figure 5.6: Energy Balance Flow Sheet	78
Figure 5.7: Block Flow Diagram	79

LIST OF TABLES

Chapter 2

Table 2.1: Cement production in the G20	
Table 2.2: Location & production of the cement factories in Egypt	
Table 2.3: Replacement ratios of fossil fuels with waste materials in selected European countries, 2010–2011 in different countries	
Table2.4: Percentage of different type of waste used as AF	
Table 2.5: Amounts and Percentages of municipal solid waste generation in Egypt.	20
Table 2.6: SRF Properties Classification Limits	31
Table 2.7: Analyses of waste characterization	33
Chapter 3	
Table 3.1: Weighting Factors of each Parameter	47
Chapter 4	
Table 4.1: Calorific values measured in lab	
Table 4.2: C, N, S, H, and O weight percentages for	
each material and its calorific values	53
Table 4.3: Calorific values in literature	
Table 4.4: Moisture content of Different Waste Types	54
Table 4.5: Materials Density Results	54
Table 4.6: Solid Waste Materials Analysis Results	
Table 4.7: Criteria of Waste Mixes Evaluation	
Table 4.8: Score of Each Waste Material as	

a One Mix and Its Rank	
Table 4.9a: Trial 1 Possible Mixes	56
Table 4.9b: Trial 2 Possible Mixes	57
Table 4.9c: Trial 3 Possible Mixes	57
Table 4.9d: Trial 4 Possible Mixes	58
Table 4.9e: Trial 5 Possible Mixes	58
Table 4.10a: Technical evaluation and the ranking of	
Trial 1 possible mixes	59
Table 4.10b: Technical evaluation and the ranking of	
Trial 2 possible mixes	59
Table 4.10c: Technical evaluation and the ranking of	
Trial 3 possible mixes	60
Table 4.10d: Technical evaluation and the ranking of	
Trial 4 possible mixes	60
Table 4.10e: Technical evaluation and the ranking of	
Trial 5 possible mixes	61
Table 4.11: Price of solid waste material	
Table 4.12: Price of each mixture and its financial score	62
Table 4.13a: Overall scores at different mixing ratios of Trial 1	63
Table 4.13b: Overall scores at different mixing ratios of Trial 2	64
Table 4.13c: Overall scores at different mixing ratios of Trial 3	
Table 4.13d: Overall scores at different mixing ratios of Trial 4	66

Table 4.13e: Overall scores at different mixing ratios of Trial 5	
Chapter 5	
Table 5.1: Mass Balance of AF Plant	71
Table 5.2: Energy Balance of AF Plant	
Chapter 6	
Table 6.1: Land Area Budget	80
Table 6.2: Price and power consumption of machines	81
Table 6.3: building area budget	81
Table 6.4: The cost of each raw waste material of mix No.5	82
Table 6.5: Employee salaries	82
Table 6.6: Cash Flow	83
Table 6.7: Cash Flow "Inflation Rate"	84
Table 6.8: Calculation of NPV	85
Table 6.9: Calculation of B/C	86

LIST OF ABBREVIATIONS

AF Alternative Fuel

DOE/EIA Department of Energy/Energy Information Administration JCEE Egyptian-German Joint Committee on Renewable Energy,

Energy Efficiency and Environmental protection

EIA Energy information administration IMF International Monetary Fund USGS U.S. Geological Survey

BP British Petroleum Corporation

EGAS The Egyptian Natural Gas holding organization ENCC Egyptian national competitiveness council

CEO Chief Executive Officer

EPAs Environmental protection agencies

WBCSD The World Business Council for Sustainable Development

RDF Refuse Derived Fuel

EEAA Environmental Affairs Agency
EIAs Environmental Impact Assessments

MSW Municipal Solid Waste ERF Energy Rich Fraction

MBT Mechanical Biological Treatment
C&D Construction and Demolished
MRF Materials Recovery Facilities
BMW Biodegradable Municipal Waste
ABT Anaerobic Biological Treatment

SRF Solid Recovered Fuel

MPT Mechanical Physical Treatment

NCV Net Calorific Value CV Calorific Value

ERFO European Recovered Fuel Organization

NIR Near Infrared Spectroscopy

SW Solid Waste

FAO Food and Agriculture Organization

NSWMP National Solid Waste Management Programme GIZ Gesellschaft für Internationale Zusammenarbeit

WWTPS Wastewater Treatment Plants

ENCPC The Egypt National Cleaner Production Centre ASTM American Society for Testing and Materials

NPV Net Present Value ROI Return on Investment B/C Benefit To Cost Ratio

CC Capital Costs