PREDICTIVE VALUE OF MULTIMODALITY EVOKED POTENTIALS IN TERM ASPHYXIATED NEWBORNS

Thesis

Submitted in partial fulfillment of the requirements for the Doctorate degree in Clinical Neurophysiology

BY

Hebatallah Raafat Mohamed Rashad Kamel M.B.B.Ch., M.SC., Faculty of Medicine Cairo University

Supervised by

Professor

Ann Ali Abdel Kader

Professor and Head of Clinical Neurophysiology Unit Faculty of Medicine, Cairo University

Professor

Saly Hassan El Kholy

Professor of Clinical Neurophysiology Faculty of Medicine, Cairo University

Professor

Dahlia Bayoumi El Sebaie

Professor of Pediatrics
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2007

Acknowledgement

I would like to express my deepest gratitude to **Prof. Ann Ali Abdel Kader**, Professor of Clinical Neurophysiology and Head of Clinical Neurophysiology Unit for giving me a lot of her valuable time and advice throughout this work. Her generous help, advice, excellent supervision and guidance will always be engraved within my memory. Without her, this work wouldn't come to light.

My profound gratitude goes to **Prof. Saly Hassan El Kholy**, Professor of Clinical Neurophysiology, Cairo University for her valuable constructive criticism, generous advice, and meticulous guidance throughout this work. She really was the heart of this work.

I am deeply indebted to **Prof. Dahlia Bayoumi El Sebaie**, Professor of Pediatrics, Cairo University for her continuous effort and valuable guidance and support throughout this work.

Special thanks to my colleagues in the Clinical Neurophysiology and Neurology Departments for their encouragement assistance and support.

I would like to express my thanks to my parents, sister and brother for their everlasting devotion, encouragement and patience. Finally, I like to report that the pain of converting blank paper to a written thesis at home was made bearable by the kind support and understanding of my dear husband.

Abstract

Hypoxic-ischemic events may cause permanent brain damage, and it is difficult to predict the long-term neurological outcome of survivors. Multimodality evoked potentials using flash visual, somatosensory, and brainstem auditory evoked potentials may assess the cerebral function in term neonates.

The aim of the present study is to determine the predictive value of multimodality evoked potentials in term asphyxiated infants with respect to the neurodevelopmental outcome.

The study was conducted on 30 asphyxiated infants and 15 normal controls in order to predict the neurological outcome.

There was a statistically highly significant association between the VEP and neurodevelopmental outcome on one hand (p=0.000) and SSEP results and neurodevelopmental outcome on the other hand (p=0.000). However, the BAEP results revealed no statistical significance with the neurodevelopmental outcome (p>0.05).

Sensitivity of SSEP and VEP was 96.4% and 90.5% respectively. Specificity of SSEP and VEP was 79.8% and 70% respectively.

This study confirmed that both flash visual evoked potentials and somatosensory evoked potentials are more accurate as prognostic indicators for term neonates.

Key words: Neonatal - Asphyxia - Multimodality Evoked – Potentials.

List of Abbreviations

ABR Auditory Brainstem Response

BAEPs Brainstem Auditory Evoked Potentials

BAER Brainstem Auditory Evoked Response

CA Conceptional Age

CFM Cerebral Function Monitor

CNS Central Nervous System

CP Cerebral Palsy

CS Caesarean Section

CT Computerized Tomography

CTG Cardiotocogram

DD Developmental Delay

DIC Disseminated Intravascular Coagulation

EEG Electroencephalography

Epi Epilepsy

FHR Fetal Heart Rate

Foc Focal

fVEP Flash Visual Evoked Potential

GA Gestational Age

GABA Gamma Amino Butyric Acid

HI Hypoxic-Ischemic

HIE Hypoxic-Ischemic Encephalopathy

HII Hypoxic-Ischemic Insult

Hypot Hypotonia

ICH Intracranial Haemorrhage

IVH Intraventricular Haemorrhage

Jit Jitterness

LED Light Emitting Diode

Msec milliseconds

MLS BAER Maximum Length Sequence BAER

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

NAA N-acetylaspartate

NIRS Near Infrared Spectroscopy

NO Nitric oxide

PET Positron Emission Tomography

PROM Premature Rupture of Membranes

PVL Periventricular Leucomalacia

RI Resistance Index

SD Standard Deviation

SEPs Somatosensory Evoked Potentials

SIADH Syndrome of Inappropriate Antidiuretic Hormone Secretion

SPECT Single Photon Emission Computed Tomography

SSEPs Short-latency Somatosensory Evoked Potentials

Sub Subtle

Ton Tonic

μvol microvolt

VEP Visual Evoked Potential

VI Visual Impairment

Contents

Introduction
Aim of Work
Review of Literature
• Neonatal Asphyxia
Multimodality Evoked Potentials in Neonates
a. Visual Evoked Potentials in Normal and Asphyxiated
Neonates
b. Brainstem Auditory Evoked Potentials in Normal and
Asphyxiated Neonates56
c. Somatosensory Evoked Potentials in Normal and Asphyxiated
Neonates
Subjects and Methods
Results
Discussion
Summary and Conclusion
Recommendations
References
Arabic Summary

List of Tables

Table (1):	Apgar score	14
Table (2):	Clinical grading system for postasphyxial encephalopathy.	16
Table (3):	Classification of cranial ultrasound findings	24
Table (4):	Predictive value of different tests at less than 6 hrs of age	37
Table (5):	Cross sectional data. Mean latencies and standard	
	deviations of VEP components across the ages studied	42
Table (6):	Prediction of outcome based on VEPs	52
Table (7):	Auditory Brainstem Evoked Response by Postconception	
	Age	64
Table (8):	Montage for Recording Somatosensory Evoked Potentials	85
Table (9):	Mean latencies and standard deviations of identified	
	positive and negative potentials for the 4 tested age	
	groups	91
Table (10):	Mean values and standard deviations of identified positive	
	and negative potentials for the 1st five weeks of life	91
Table (11):	Relationship of SEP pattern to outcome	93
Table (12):	Demographic factors of the control group	107
Table (13):	Clinical examination of the control group	107
Table (14):	Initial VEP results of the control group	108
Table (15):	Follow up VEP results of the control group	108
Table (16):	Mean and standard deviation of the initial BAEPs in the	
	control group	109
Table (17):	Mean and standard deviations of follow up BAEPs in the	
	control group	110
Table (18):	Mean and standard deviation of initial SSEPs in the	
	control group	110
Table (19):	Mean and standard deviation of the follow up SSEPs in the	
	control group	111
Table (20):	Maternal factors of the patients group	112
Table (21):	Obstetric factors of the patients group	113

Table (22):	Perinatal factors of the asphyxiated infants	114
Table (23):	Apgar score of the patients group	115
Table (24):	Neurological examination of the asphyxiated infants	117
Table (25):	Abnormal neurodevelopmental outcome in the patients	
	group	118
Table (26):	Mean and standard deviations of initial and follow up VEPs	121
Table (27):	Mean and standard deviation of initial and follow up	
	BAEPs	122
Table (28):	Mean and standard deviation of initial and follow up	
	SSEP	123
Table (29):	Comparisons of demographic factors among patients and	
	control group	123
Table (30):	Mean and standard deviation of initial VEPs of patients and	
	control group	124
Table (31):	Mean and standard deviation of patients and control follow	
	up VEPs	125
Table (32):	Mean and standard deviation of patients initial and follow	
	up VEPs	125
Table (33):	Mean and standard deviation of the initial patients and	
	control BAEPs	126
Table (34):	Mean and standard deviation of patients and control follow	
	up BAEPs	127
Table (35):	Mean and standard deviation of initial and follow up	
	patients BAEPs	128
Table (36):	Mean and standard deviation of initial control and patients	
	SSEPs	129
Table (37):	Mean and standard deviation of follow up control and	
	patients SSEPs	130
Table (38):	Mean and standard deviation of initial and follow up	
	patients SSEPs	131

Correlation coefficient between VEP, SSEP and Apgar	
score	132
Correlation coefficient between BAEPs and Apgar score.	132
Correlation coefficient between VEP, SSEP and Downe's	
score	133
Correlation coefficient between BAEPs and Downe's	
score	134
Association between chest compression and other clinical	
variables	135
Association between seizures and other clinical variables	135
Association between different clinical variables and	
neurodevelopmental outcome	136
Association between neurodevelopmental outcome and	
Apgar and Downe's score	137
Association between multimodality evoked potentials and	
neurodevelopmental outcome	137
Association between Apgar score and different clinical	
variables	138
Association between cranial ultrasound and different	
clinical variables	139
: Association between cranial ultrasound and Apgar and	
Downe's score	140
Association between VEP and different clinical variables.	141
Association between different clinical variables and	
SSEPs	142
Association between BAEPs and different clinical	
variables	143
Association between BAEPs and Apgar and Downe's	
score	144
	Correlation coefficient between BAEPs and Apgar score. Correlation coefficient between VEP, SSEP and Downe's score

List of Figures

Figure (1):	Schematic representation of maturation of the sensory	31	
	pathways in pre and postnatal life	. .	
Figure (2):	VEPs from very premature neonates recorded within1st 3	43	
	days of life		
Figure (3):	VEPs from 4 premature neonates	44	
Figure (4):	Recordings from a severely asphyxiated neonate	52	
Figure (5):	VEPs from a moderately asphyxiated infants	53	
Figure (6):	VEPs from a moderately asphyxiated neonate	54	
Figure (7):	Ipsilateral and contralateral recording montages in the	61	
	neonatal brainstem auditory evoked potential	01	
Figure (8):	Brainstem auditory evoked potential in premature infants	62	
Figure (9):	Normal newborn and adult BAER mean latency values.	65	
Figure (10):	Normal newborn and adult BAER mean IPL values	66	
Figure (11):	Sample recordings of the brainstem auditory evoked		
	response at 21, 51, and 91/s clicks in (A) a normal term		
	neonate and (B) an asphyxiated term neonate	74	
Figure (12):	Sample recordings of the BAER on day 3 at various rates	75	
	of clicks		
Figure (13):	Peripheral and cortical SEPs of a 1-month-old infant	86	
Figure (14):	Methods of delivery in the mothers of the studied patients	114	
	group		
Figure (15):	Percentages of seizures' types among the studied patients	116	
	group		
Figure (16): Percentage of neurodevelopmental outcome in the studied			
	patients group		
Figure (17):	Cranial ultrasound findings in the patients group	119	

Figure (18):	Mean values for SSEP (N20& P22) in studied groups	129
Figure (19):	Correlation between SSEP-N20 and Apgar score	132
Figure (20):	Correlation between SSEP-P22 and Apgar score	133
Figure (21):	Percentages of VEP and SSEP abnormalities in patients	145
	group	
Figure (22):	Percentages of SSEP, VEP, and BAEP abnormalities	145
	among patients with neurodevelopmental abnormalities.	173

Introduction

Birth asphyxia is a prenatal event, in serious cases leading to a dismal outcome with risk of death or permanent sequels (*Milsom et. al.*, 2002).

Perinatal asphyxia is an insult to the fetus or newborn due to lack of oxygen (hypoxia) and/or lack of perfusion to various organs. It is associated with tissue lactic acidosis. It is accompanied by hypoventilation and maybe associated with hypercapnia (*Evans and Levene*, 1999 and Auorora and Snyder, 2004).

Perinatal asphyxia is also defined as it is the state in which placental or pulmonary gas exchange is compromised or cases altogether, typically producing a combination of progressive hypoxaemia and hypercapnia (*Vannucci and Palmer*, 1997). If the hypoxaemia is severe enough initially peripheral tissues (muscle and heart) and ultimately brain tissue will develop an oxygen debt, leading to anaerobic glycolysis and the production of lactacidosis. The lactic acid diffuses into the blood stream causing metabolic acidaemia. Ischemia in the newborn typically arises from antecedent systemic hypoxia-acidosis, with its depressant effect on cardio-vascular function, or from occlusive vascular function or from occlusive vascular disease (*Volpe*, 2001).

The insult causing asphyxia may be primarily antepartum 51% of cases, intrapartum in 40% and postpartum in 9% (*Mbweza*, 2000).

The clinical neurological sequelae in the immediate neonatal period following perinatal asphyxia are referred to as hypoxic-ischaemic encephalopathy (HIE). HIE was originally described by *Amiel-Tison* in *1969* and there have been numerous studies since then.

Hypoxic-ischemic (HI) events may cause permanent brain damage, and it is difficult to predict the long-term neurological outcome of survivors (*Scalais et. al.*, 1998).

Several methods have been used for the early prediction of neurological outcome after perinatal asphyxia. These methods include estimation of hypoxic-ischemic encephalopathy based on clinical assessment and imaging techniques (*Levene et. al.*, 1985).

Neuroimaging techniques such as computed tomography, ultrasonography, and magnetic resonance imaging provide information about the morphology of the nervous system without assessing its function (*Scalais et. al.*, 1998).

This can be done by electrophysiological techniques including flash visual evoked potentials (fVEP) and somatosensory evoked potentials (SEP) (*Scalais et. al.*, 1998).

They are an easy, noninvasive and early aid in the assessment of systemic or neurological diseases involving somesthetic, visual and auditory pathways without demanding cooperation from the infants. In addition, they could be easily performed during spontaneous sleep following feeding, not requiring any sedation (*Mercuri et. al.*, 1994; *Majnemer et. al.*, 1999).

Flash visual evoked potentials reflect the hemispheric structures, somatosensory evoked potentials reflect different levels of neuraxis and brainstem auditory evoked potentials (BAEPs) reflect the cochlea and the brainstem auditory pathways. The use of one modality gives only a focal cerebral assessment, because it only looks at the visual, sensory or

auditory pathway; while multimodality evoked potentials gives a more global assessment (*Scalais et. al.*, 1998).

Multimodality evoked potentials have been employed not only to assess the sensory pathways but also as a marker of global neurological status and these in formulating prognosis of global neurological outcome. In full-term newborns very good results have been achieved employing longitudinal assessment of fVEP and SEP. Normal neonatal SEPs are consistently related with normal neurodevelopmental outcome, wherever abnormal fVEPs are prognostic indicators of abnormal outcome. Repeated measurements of both increases the accuracy of the prognosis (*Mercuri et. al.*, 1994).

A review of the literature revealed that brainstem conduction abnormalities in auditory brainstem evoked potentials are associated with neuromotor impairment. Visual evoked potentials are highly accurate in predicting neurologic deficit in early childhood in asphyxiated term neonates. Sensitivity and specificity are consistently high for somatosensory evoked potentials in term newborns (*Anand et. al., 1991; Majnemer and Rosenblatt, 1996; and Jiang et. al., 2000*).

Aim of the Work

This study aims precisely at analyzing and determining the predictive value of multimodality evoked potentials with respect to the studied neurological and developmental outcome in asphyxiated neonates at 3 months of age.