

Role of MRI in characterization of hypervascular hepatic focal lesions in cirrhotic patients

Thesis

Submitted for partial fulfillment of Master degree in

Radio-diagnosis

Presented by

Sarmad Sami Rasheed

M.B B.Ch

Supervised by

Prof. Dr. Faten Mohammed Mahmoud Kamel

Professor of Diagnostic Radiology
Faculty of Medicine, Ain Shams University

Dr. Omer Farouk

Lecturer of Diagnostic Radiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

دور الرئين المفناطيسي في وصف البؤر الكبديه غزيرة الأوعية الدمويه في مرضى التليف الكبدي

رسالة

توطئة للحصول علي درجة الماجيستير في الأشعة التشخيصية مقدمة من

□ سرمد سامي رشيد الجوذري/الطبيب بكالوريوس الطب و الجراحة

تحت إشراف

□أد/ فاتن محمد محمود كامل

أستاذ الأشعة التشخيصية

كلية الطب- جامعة عين شمس

در عمر فاروق کامل \Box

مدرس الأشعة التشخيصية كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٧

سورة البقرة الآية: ٢١

First and foremost thanks to ALLAH, the Most Merciful.

Special thanks to **Prof. Dr. Faten Mohammed Mahmoud Kamel** Professor of Radiodiagnosis, Faculty of
Medicine—Ain Shams University, for giving me the honor to
work under her supervision, valuable advices, continuous
encouragement, judicious guidance and kind support at this
study.

My deep appreciation to lecturer of Radiodiagnosis, Dr. Omer Farouk Faculty of Medicine –Ain Shams University, for his sincere guidance and effort during this study.

To my great lovely family, Thank you for your support and patience.

Special thanks to my father , mother , wife , sons , brothers and sisters for their spiritual support.

Sarmad Sami Rasheed

Contents

Subjects	Page
• List of Abbreviations	I
List of Cases	III
List of table	IV
List of Figures	V
• Introduction	1
Aim of the Work	3
Review of literature:	
Chapter 1: Anatomy of the liver	4
Chapter 2: Techniques of MR examination of the live	r 30
Chapter 3: Pathology and MRI appearance	of
hypervascular hepatic focal lesions	54
• Patients And Methods	87
Results	92
Illustrated cases	104
• Discussion	123
Summary and Conclusion	133
Recommendations	136
References	137
Arabic Summary	

List of Abbreviations

3D : Three dimensional.

ADC : Apparent diffusion coefficient.APA : Arterio-portal anastomoses.

BH : Breath hold.

CT : Computed tomography.

CV : Central venule.

DW MRI: Diffusion weighted magnetic resonance Imaging.

DWI : Diffusion weighted imaging.EPI : Echo planner imaging.

FFE: Fast field echo.

Fig: Figure.

FLL: Focal liver lesions.

FNH : focal nodular hyperplasia.

FS : Fast spin.
FSE : Fast spin echo.
GB : Gall bladder.

Gadolinium diethylenetriamine pentaacetic acid

Gd DTPA: (hepatocyte-specific contrast agent taken by

hepatocytes and excreted into biliary system).

GRAPPA: Generalized auto-calibrating partially parallel

acquisition.

GRE : Gradient recalled echo.

HA : Hepatic artery.

HCC: Hepatocellular carcinoma.

HCV: Hepatitis c virus.

HMS: Hepatic microvascular subunits.

IQR Interquartile rangeIVC : Inferior vena cava.

Min : Minute.

MRI : Magnetic resonance imaging.

msec : Millisecond.

NEX: Number of excitations.

PSC: Primary sclerosing cholangitis.

PV : Portal vein.

RT : Respiratory triggered.

SE : Spin echo.
Sec : Second.

SGE : Spoiled gradient echoSI : Signal intensity.SNR : Signal to noise ratio.

∠List of Abbreviations

SOR Standard of reference. Spectral attenuated inversion recovery (fat **SPAIR** suppression mri technique). \mathbf{T} Tesla. Echo time. TE : High resolution isotropic volume examination. **THRIVE** Repetition time. TR Turbo spin echo. **TSE** Ultrasonography. US

VIBE : Volumetric interpolated breath hold examination.

WIs : Weighted images.

∠List of Cases

List of Cases

Case. No.	Subject	Page
(1)	Hepatocellular carcinoma.	104
(2)	Hepatocellular carcinoma with portal vein invasion.	106
(3)	Hepatic Heamangioma.	108
(4)	Hepatocellular carcinoma.	110
(5)	Residual/recurrent HCC in chemoembolized lesion.	112
(6)	Regeneration hepatic focal lesion.	115
(7)	high grade dysplastic focal lesion	117
(8)	Hepatocellular carcinoma.	119
(9)	Hepatocellular carcinoma.	121

List of Tables

Tab. No	Subject	Page
Table (1)	Proposed strategy to improve single shot Echo	52
	planar DW Imaging quality of the liver.	32
Table (2)	LI-RADS Category	72
Table (3)	Age (years) distribution of the study group	93
Table (4)	Lesions distribution of the study group.	93
Table (E)	Relation between hypervascular hepatic focal	0.4
Table (5)	lesions in T1 WI.	94
Table (6)	Relation between hypervascular hepatic focal	OF
Table (6)	lesions in T2WI.	95
	Relation between hypervascular hepatic focal	
Table (7)	lesions in dynamic study in arterial phase	96
	enhancement.	
	Relation between hypervascular hepatic focal	
Table (8)	lesions in dynamic study in portal phase	97
	enhancement.	
	Relation between hypervascular hepatic focal	
Table (9)	lesions in dynamic study during delayed phase	98
	enhancement.	
Table (10)	Relation between hypervascular hepatic focal	99
Table (10)	lesions in DWI	99
Table (11)	Mean ADC value of the different lesions.	100
Table (12)	Comparison between malignant group and benign	102
	group regarding ADC value	102
Table (13)	Comparison between hemangioma group and	102
	regenerative group regarding ADC value	103

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Hepatic segmentations.	7
Fig. (2)	Segmentation of the liver – Couinaud.	8
Fig. (3)	Dissection to show the relations of the hepatic artery, bile duct and portal vein.	11
Fig. (4)	Normal anatomy of the celiac Artery.	11
Fig. (5)	The portal vein and its tributaries.	12
Fig. (6)	Normal anatomy of the portal-venous system.	13
Fig. (7)	Normal portal venous anatomy.	13
Fig. (8)	Coronal MIP image from contrast enhanced MR imaging shows variant anatomy of the portal vein.	14
Fig. (9)	Diagram show hepatic blood supply.	15
Fig. (10)	Arrangement of the hepatic venous territories.	16
Fig. (11)	Anatomy of the hilar plate.	20
Fig. (12)	Anatomy of the biliary system.	20
Fig. (13)	Normal MR of hepatic veins on axial T1 and T2 weighted images.	22
Fig. (14)	Normal MR postcontrast. Segmental anatomy of the liver on axial T2 weighted images.	23
Fig. (15)	Coronal reformat shows the relationship among the hepatic segments	24
Fig. (16)	Normal MR Liver signal intensity	25
Fig. (17)	Normal MR Segmental anatomy of the liver.	26

Fig. No.	Subject	Page
Fig. (18)	Sagittal MR images of the liver showing the inferior vena cava.	27
Fig. (19)	Coronal MR image of the liver best demonstrating relationship of the liver to the lung base, pleural space, diaphragm and subdiaphragmatic regions.	28
Fig. (20)	MR post-contrast (true-FISP, FIESTA) segmental anatomy of the liver.	29
Fig. (21)	Axial breath-hold in-phase and out-of-phase	34
Fig. (22)	Schematic illustrates water molecule movement	45
Fig. (23)	Axial diffusion-weighted image ($b = 50 \text{ sec/mm}^2$)	48
Fig. (24)	Regenerative or low-grade dysplastic nodule in a 54-year-old man with cirrhosis resulting from hepatitis C infection	57
Fig. (25)	Steatotic regenerative nodules in a 49-year-old woman with cirrhosis secondary to fatty liver disease	58
Fig. (26)	Siderotic nodules in a 55-year-old man with cirrhosis resulting from hepatitis C infection.	58
Fig. (27)	High-grade dysplastic nodule or small HCC in a 52-year-old man with cirrhosis resulting from hepatitis C infection	61
Fig. (28)	High-grade dysplastic nodule or early HCC in a 46-year-old man with cirrhosis resulting from hepatitis C infection	62
Fig. (29)	Nodule-in-nodule appearance at 4-month follow-	64

Fig. No.	Subject	Page
	up examination	
Fig. (30)	Small progressed HCC in a 54-year-old woman with cirrhosis resulting from hepatitis C infection.	69
Fig. (31)	Large HCC in a 55-year-old man with cirrhosis resulting from hepatitis C infection	77
Fig. (32)	Transient arterial enhancement in a 45-year-old man with hepatitis C infection–related cirrhosis secondary to portal vein thrombosis	79
Fig. (33)	Confluent fibrosis in a 60-year-old woman with hepatitis C infection—related cirrhosis	81
Fig. (34)	Sclerosing hemangioma	82
Fig. (35)	HCC mimicking hemangioma	83
Fig. (36)	Intrahepatic cholangiocarcinoma	86
Fig. (37)	Sex distribution of patients in the study	92
Fig. (38)	Median with interquartile range (IQR) of ADC value in malignant group and benign group.	101
Fig. (39)	Median with interquartile range (IQR) of ADC value in hemangioma and regenerative group.	102
Fig. (40)	Hepato-cellular carcinoma case(1)	105
Fig. (41)	Typical hepatocellular carcinoma case(2)	107
Fig. (42)	Typical hemangioma case(3)	109
Fig. (43)	Hepatocellular carcinoma case(4)	111
Fig. (44)	HCC recurrence/residual case(5)	114

Fig. No.	Subject	Page
Fig. (45)	Regenerative/cirrhotic nodules case(6)	116
Fig. (46)	High-grade dysplastic nodules case(7)	118
Fig. (47)	Hepatocellular carcinoma case(8)	120
Fig. (48)	Hepatocellular carcinoma case(9)	122

Abstract

Liver cirrhosis is a common problem in Egypt with most of the cause are viral induced liver cirrhosis (**Robert et al., 2008**).

Distinguishing between HCC and benign hypervascular lesions in liver cirrhosis remains a major challenge in management of patients at risk for developing hepatocellular carcinoma. The differential diagnosis of a hypervascular liver lesion in cirrhotic liver can be narrowed to a few entities, including pseudolesions (for very small lesions), regenerative nodules, dysplastic nodules, HCCs. Occasionally; a cirrhotic liver may have preexisting flash-filling hemangiomas that may mimic malignant lesions. Small, arterially-enhancing lesions detected with MRI have a low likelihood of representing HCC, and MRI follow-up of such lesions is a reasonable approach. Lesions that increase in size, convert to hypointense on subsequent T1W images, convert to hyperintense in T2W images, or develop rim enhancement on follow-up MRI images are concerning and should prompt consideration intervention(Parente et al., 2012).

Magnetic resonance imaging (MRI) represents an extremely useful method in detecting of early HCC and in follow up post locoregional therapy.

Keywords: Hypervascular focal lesions, Liver cirrhosis, HCC, MRI, dynamic study, DWI, ADC maps, T1 WIs, T2 WIs.

Introduction

Cirrhotic livers are characterized by irreversible remodeling of the hepatic architecture, including bridging fibrosis and a spectrum of hepatocellular nodules (*Forner et al.*, 2008)

Various types of hypervascular lesions are common among patients with cirrhosis. The ability to differentiate between malignant and benign nodules is limited; nodules are primarily characterized on the basis of differences in vascularity. Regenerative and low-grade dysplastic nodules have predominantly portal venous blood supplies and demonstrate as much enhancement as the liver parenchyma. High-grade dysplastic nodules and HCCs demonstrate a loss of portal vascularization and have more non-triadal arteries. High-grade dysplastic nodules and early HCCs usually are hypovascular, but they may enhance in the arterial phase, whereas those that are larger and more advanced usually appear as hypervascular nodules.

The transition from regenerative and dysplastic nodules to HCC is not characterized by discrete steps; rather, it is marked by a continuum of vascular pattern changes. Many of the intermediate stages are atypical, making their characterization difficult.

In several studies, including a meta-analysis, the specificities of MR imaging and CT were found to be comparable for depicting HCC in the cirrhotic liver,