Post Stroke Neglect

Essay

Submitted for the Partial Fulfillment of Master Degree in **Neuropsychiatry**

Presented By

AHMED EISAID EISAYED MOHAMED

M.B., B.CH. MANSOURA UNIVERSITY

Under Supervision of

Prof. Dr. / Hany Mohamed Aref

Professor of Neurology Faculty of Medicine- Ain Shams University

Ass.Prof. / Salma Hamed khalil

Assistant Professor of Neurology Faculty of Medicine- Ain Shams University

Ass.Prof. /Haitham Hamdy Salem

Assistant Professor of Neurology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2013

I would like to dedicate this essay to my Professor DR: Hussein Ibrahim .I will never find adequate words to express my gratitude.

Also

My Wife and my Brother Mohamed for dealing so patiently, tactfully during this essay.

Acknowledgment

Thanks Allah almighty, the gracious for blessing me with such a wonderful group of professors who instructed and guided me throughout my work.

I would like to express my sincere thanks to Prof. Dr. / Hany Mohamed Aref, Professor of Neurology, Faculty of Medicine – Ain Shams University for his supervision, guidance, valuable advice, helpful directions and continuous interest throughout the whole work.

My extreme thanks and gratefulness to

Ass Prof. Dr./ Salma Hamed Khalil, Professor of Neurology, Faculty of Medicine – Ain Shams University for his keen interest, beneficial advice, constant support and scientific opinions during this work.

I also wish to offer my warmest and deep appreciation to

Ass Prof. Dr./ Haitham Hamdy Salem, Assistant Professor of Neurology, Faculty of Medicine – Ain Shams University for his unlimited, endless help and continuous encouragement.

Contents

List of Abbreviations	I
List of Figures	III
List of Tables	IV
Introduction	1
Aim of the Essay	5
Chapter (1): Post Stroke Neglect	6
Epidemiology	7
Physiological Basis of Neglect	7
Attention–Arousal Theory	7
Hemispheric Specialization	9
Disengagement Theory	9
Interhemispheric Interaction and Inhibition	10
Factors affect post stroke neglect	10
Reference frame	10
Sensory and motor-perceptual processing	11
The effect of distance	12
Varieties of Unilateral neglect	13
Clinical presentation of neglect patient	18
Prognosis of post stroke neglect	19
Chapter (2): Neural bases of unilateral neglect:	20
Heterogeneity of Unilateral Neglect	21
Framework explains Heterogeneity of UN	22
Neural bases of dorsal versus ventral Streams	25
Critical Lesions site According Onset of Stroke	
Neglect after24h versus 48 of stroke onset:	
Acute versus chronic neglect	32
Critical Lesions site according affected hemisphere	36

Contents (Cont....)

Critical Lesions site According Type of neglect	39
Allocentric vs. egocentric neglect	39
Personal vs. extrapersonal neglect	39
Spatial neglect vs. spatial extinction	39
Imaginal neglect vs. visual Neglect	40
Modality -Specific Neglect	43
Neural bases of neglect recovery	44
Chapter (3): Assessment of unilateral neglect	46
Paper and Pencil test	47
Line Bisection and Cancellation Tests	47
Refining Line Bisection and Cancellation Tests	49
Copying and Drawing Tests	50
The Behavioural Inattention Test	51
Semi-structured Scale	59
The Catherine Bergego Scale	60
Functional Independence Measure	62
Visual image transformation stimulation a head HMD	63
Three dimensional immersive street crossing program	67
Chapter (4): Management of Post Stroke Neglect	72
Environmental-motor remapping	73
Visual Scanning	73
Computer-Based Rehabilitation via virtual reality	74
Activation Strategies	75
Limb Activation	76
Sensory Stimulation Interventions	77

Contents (Cont....)

Feedback Strategies	77
Potential negative effect of stimulus Deprivation	78
Prism Treatment	78
Eye-Patching and Unilateral Neglect	80
Caloric/Vestibular Stimulation	82
Caloric stimulation	82
Vestibular Galvanic Stimulation	83
Optokinetic Stimulation	84
Trunk Rotation Therapy	86
Neck Muscle Vibration	87
Neck muscle vibration	87
Transcutaneous Electrical Nerve Stimulation	88
Pharmacological Treatment	89
Dopaminergic Medication Therapy	89
Acetyl cholinesterase Inhibitors Therapy	91
Physiological treatment	92
Repetitive Transcranial Magnetic Stimulation	92
Transcranial Direct Current Stimulation	93
Discussion	96
Summary	105
Recommendations	108
References	109
Arabic Summary	

List of Abbreviations

ACA : Anterior cerebral artery
ADL : Activities Daily living

AREC : Arrows egocentric coordinate **AROC** : Arrows object-centered coordinate

BG : Basal ganglia

BIT : The Behavioural Inattention Test

BITB : The Behavioural Inattention Test behavioral task

BITC: The Behavioural Inattention Test Conventional subtest

CBS : Catherine Bergego Scale

CCD : Combined system Digital Camera

DAN : Dorsal attention networkdLPFC : Dorso lateral prefrontal cortexDWI : Diffusion weighted imaging

EC : Egocentric coordinate FEF : Frontal eye field

FIM : Functional Independence Measure

FOF : Fronto-occipital fasciculus
HMD : Head mounted display
IFG : Inferior frontal gyrus

IFOF : Inferior fronto-occipital fasciculusILF : Inferior longitudinal fasciculus

INS : Insula

IPL : Inferior parietal lobuleLPFC : Lateral prefrontal cortexMCA : Middle cerebral artery

MRF : Mesencephalic reticular formation

MRI : Magnetic resonance image
 MTG : Middle temporal gyri
 NIHSS : Best medical treatment
 NRT : Nucleus reticularis thalami

OC : Object-centered

OKS : Optokinetic stimulation
PWI : Perfusion weighted imaging

rTMS : Repetitive transcranial magnetic stimulation

SC : Superior colliculus

SLF : Superior longitudinal fasciculus

SMG : Supramarginal gyrusSPL : Superior parietal lobuleSTG : Superior temporal gyrus

tDCS : Transcranial direct current stimulation

TENS : Transcutaneous Electrical Nerve Stimulation

TPJ : Temproparietal junctionUN : Unilateral Neglect

VA : Visual area

VAN : Ventral attention network

vLPFC :Ventro lateral prefrontal cortex

:

VR : virtual reality

WHO: World Health Organization

ZI : Zoom-in

List of Figures

Figure No.	Title	Page No.
1	Fronto-parietal networks	23
2	significant critical brain lesions in neglect	26
3	Examples of errors reading sentences	30
4	Statistical voxel-wise lesion White matter fibre tract analysis in the initial phase of the stroke	34
5	Statistical voxel-wise lesion White matter fibre tract analysis in the chronic phase of the stroke	35
6	Three-dimensional anatomical reconstruction of the patients' lesions in right and left hemisphere	38
7	Overview of brain regions associated with different deficits in patients with unilateral spatial neglect	40
8	Imaginal neglect	42
9	frontoparietal attentional networks for visuospatial processing in the two hemispheres	42
10	diagram of three dimensional virtual program	70

List of Tables

Table No.	Table Title	Page No.
1	BIT Conventional subtest 6 papers and pencil test	51
2	BIT subtest 9 behavioral task	53
3	BIT Conventional subtest 6 papers and pencil test scores	55
4	BIT subtest 9 behavioral task scores	56
5	BIT Conventional subtest 6 papers and pencil test validity	57
6	BIT subtest 9 behavioral task validity	58

INTRODUCTION

According to estimate from World Health Organization there were more than 5.47 million deaths from cerebrovascular disease worldwide (*World Health Organization*, 2009). Stroke is the second leading cause of death worldwide and the third in developed countries (*Sarti et al.*, 2000).

However the number of stroke survivors is increasing (around 2/3rd of 700.000 stroke patients each year survive in the United States alone, according to the national institute of neurological disorders and stroke; because of the improvement in the management of acute stroke. This has resulted in a larger group of patients with important residual physical and psychological disabilities (*Chemerinski et al.*, 2006).

Stroke as it can cause physical problems, it can also affect cognitive functions in which processing of raw sensory signals into complex concepts that can be remembered and used to create new ideas that can be formulated into action (*Petersen*, 2000).

There are 2 main theories have been suggested to declare the association between stroke and its cognitive impairment sequelae,

the first theory claims that the cognitive impairment are psychological reactions to the subsequent post-stroke disability, the second theory postulates that post-stroke cognitive impairment symptoms are specifically due to direct brain damage and according to the damaged area the symptoms may vary, mostly frequent frontoparietal connectivity (*Starkstein et al.*, 1992).

The risk Factors of developing cognitive impairment secondary to stroke begins at age 50y, risk is highest in those persons with vascular risk factors, less physical exercise; hypertension could be as high as 8 times higher, depending on the severity of the hypertension. With cardiac disease, especially atrial fibrillation, valve lesion, Diabetes, cigarette smoking and heavy alcohol use are each associated with about the same elevation of risk to develop cognitive impairment (*Jokine et al.*, 2006).

Stroke is the second most common cause of cognitive function impairment, the accumulation of lacunar infarcts and cerebral hypo perfusion are the most common causes. Strokes predominantly affect the connections between areas of cortex that associate complex types of information, the disruption of which leads to impaired cognitive function (*Mok et al.*, 2005).

Unilateral neglect (UN) is one of the cognitive disabling features of a stroke, and is defined as a failure to report, respond, or orient to sensory stimuli presented to the side contralateral to the stroke lesion site (*Unsworth* . 2007).

At least one out of three people after stroke are unable to locate themselves within their environment and have spatial neglect error (*Buxbaum et al.*, 2007). UN is more common in patients with right cortical lesions than left and parietal-frontal disconnection is specifically implicated (*Ringman et al.*, 2004).

Assessment post stroke neglect in the extrapersonal space can be easily and safely detected and measured using three-dimensional immersive virtual street crossing program (**Kim et al., 2010**). And there are two bedside measures: the Behavioral Inattention Test and the Catherine Bergego scale used to diagnose spatial-motor dysfunction (**Kelly et al., 2012**).

There is evidence that intervention beginning in the first week after stroke may improve therapeutic efficacy by taking advantage of an enhanced window of plasticity (**Eleanor.2011**). Rehabilitation interventions to improve neglect may be classified into those which attempt to increase the stroke patient's awareness

of or attention to the neglected space and those which focus on the remediation of deficits of position sense or body orientation (**Pierce and Buxbaum. 2002**).

Two week course of continuous magnetic stimulation over the left hemisphere posterior parietal cortex may be a potential effective strategy in accelerating recovery from visuospatial neglect in sub-acute stroke patients, possibly counteracting the hyper excitability of the left hemisphere parietofrontal circuits (Koch G and Annabel T, 2011).

Patients experiencing neglect of far space or of personal space experienced complete recovery more than neglect of peripersonal space patients. Complete recovery was seen by 6 months post stroke in 52% respectively compared with 13% of patients experiencing neglect of peripersonal space (*Robert et al.*, 2011).

Safety Issues to UN Patients should undergo with occupational and vocational rehabilitation evaluation before returning to work that involves handling machines or tools that may cause injury to self or others and other environmental risks should be removed from the homes of patients for their safety and the safety of the others (*Hoffman et al.*, 2012).