

Comparison between the Role of CT Perfusion versus MRI Perfusion in the Diagnosis of Acute Cerebral Ischemia

Essay

Submitted for partial fulfillment of Master degree in Radiodiagnosis

 $\mathcal{B}y$

Mai Sayed Abdel Fattah

M.B.,B.Ch.

Faculty of Medicine Ain Shams University

Supervised By

Ass.Prof. Dr. Mostafa Mahmoud Gamal Eldin

Assisstant professor of Radio-diagnosis Faculty of Medicine Ain Shams University

Dr. Ayman Mohamed Ibrahim

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Radiodiagnosis Department Faculty of Medicine Ain Shams University 2010

مقارنه بين دورالتشبع بالأشعة المقطعية والتشبع بالرنين المغناطيسي في حالات السكتة الدماغية الحادة نتيجة القصور الدموي

در اسة مقدمة من الطبيبة مي سيد عبد القتاح بكالوريوس الطب والجراحة جامعة عين شمس

توطئة للحصول على درجة الماجيستير في الأشعة التشخيصيّة

تحت إشراف امد/ مصطفى محمود جمال الدين أستاذ مساعد بقسم الأشعة التشخيصيَّة كلية الطب جامعة عين شمس

الدكتور/ أيمن محمد إبراهيم مدرس بقسم الأشعة التشخيصيَّة كلية الطب جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس

Acknowledgment

First and foremost, thanks to Allah, to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Ass. Prof. Or. Mostafa Mahmoud Gamal Eldin, for his sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special gratitude to Tr. Apman Mohamed Thrahim, for his close supervision and continuous advice which gave me the best guide during different stages of this work.

I would like to thank my professors, my father, my mother, my sisters, and my Friends for their support and moral encouragement.

Mai Saped A. Elfattah

Abbreviations

ACAAnterior Cerebral Artery
ADCApparent Diffusion Coefficient
AICA Anterior Inferior Cerebellar Artery
AIFArterial Input Function
ASLArterial Spin Labeling
BA Basilar Artery
BBB Blood-Brain Barrier
CBV Cerebral Blood Flow
CBV Cerebral Blood Volume
CIConfidence Interval
CMRO2 Cerebral Metabolic Rate for Oxygen
CNSCentral Nervous System
CTA CT-Angiography
CTP CT Perfusion
DSCDynamic Susceptibility Contrast
DWI-MR Diffusion Weighted Magnetic Resonance
ECA External Carotid Artery
EPIEcho-Planar Imaging
GEGradient Echo
HT Hemorrhagic Transformation
ICA Internal Carotid Artery
IP Ischemic Penumbra
MCAMiddle Cerebral Artery
MDCT Multi-Detector CT
MRAMagnetic Resonance Angiography
MRI Magnetic Resonance Imaging
MTT Mean Transit Time

Abbreviations

NCCT	Noncontrast CT
PCA	Posterior Cerebral Artery
PET	. Positron Emission Tomography
PICA	Posterior Inferior Cerebellar Artery
PS	Surface area Product(measuring microvascular
permeabilit	y)
PWI-MR	perfusion-weighted magnetic resonance
ROI	Region Of Interest
S	Second
SCA	Superior Cerebellar Artery
SE	Spin Echo
SI	Signal Intensity
SPECT	Single Photon Emission CT
T	Tesla
TAC	Time-Attenuation Curves
tPA	Tissue type Plasminogen Activation
TR	Time to Repeat
TTP	Time To Peak
XECT	Xenon-Enhanced CT

Eist of Figures

Figure	Title	Page No.
No.	Title	1 age 110.
1.1	MRA of ICA segments	5
1.2	Angiography of branches of ICA	7
1.3	MRA of ACA	9
1.4	MRA of MCA	10
1.5	Diagram of VertebroBasilar system	11
1.6	MRA of Vertebrobasilar branches	13
1.7	MRA of PCA	14
1.8	Vascular supply of medial aspect of the brain	15
1.9	Vascular supply of lateral aspect of the brain	15
1.10	Intracranial arteries overview. coronal cuts	16
1.11	Intracranial arteries overview. Axial cuts	17
1.12	Diagram of Circle of willis	18
1.13	MRA of circle of willis	19
2.1	Schematic of brain involvement in acute stroke.	22
3.1	Oblique view of a CT gantry with an x-ray tube, an x-ray fan, and detectors.	31
3.2	Diagram shows detector array designs.	32
3.3	Typical time/density curves after injection of a contrast medium bolus in perfusion CT.	40
3.4	Graph illustrates a time-attenuation curves (TAC) plotted from CTP data obtained in normal brain tissue.	40
3.5	NCCT and CTP parametric maps, demonstrate normal symmetric brain perfusion.	41
3.6	CTP requires a series of images performed at a single anatomical location following administration of contrast medium	42
3.7	Minor changes in the positioning of the	47

Eist of Figures

	vascular input function ROIs	
3.8	MTT map shows analysis using an unaffected artery for the AIF.	49
3.9	Use of the affected artery in secondary analysis of abnormal tissue.	50
3.10	Typical diffusion MR maps. The appearances on the DWI and ADC map	58
3.11	Dynamic susceptibility contrast images	60
3.12	Time–signal intensity curve of PWI.	61
3.13	Concentration-time curve of PWI in normally perfused tissue	62
3.14	Concentration-time curve shows various cerebrovascular parameters	62
3.15	MR Perfusion maps obtained at 4 hours after the onset of left hemiparesis.	63
3.16	MTT map shows larger ischemic lesion than DWI.	64
3.17	Diffusion-perfusion mismatch in acute ischemic stroke	68
4.1	NCCT shows normal pattern yet CTP maps demonstrate core infarct in the right MCA	72
4.2	CTP images shows irreversibly ischemic infarct "core".	75
4.3	CTP shows reversible penumbra	76
4.4	CTP shows territorial infarct with penumbra	77
4.5	CT perfusion maps showing heterogeneous perfusion in the left MCA territory.	78
4.6	Discrepancy between ischemic lesion size as shown on the CBF and TTP maps in a patient with right hemispheric stroke.	80
4.7	CTP images show Postischemic hyperperfusion	82
4.8	PWI showA case of left MCA occlusion 3.5 h after the onset of symptoms	83

Eist of Figures

4.9	Signal intensities on T2WI and DWI in	85
	time	
4.10	diffusion-perfusion mismatch	86
4.11	DWI&PWI show irreversible infarction	86
	On DWI there is a large area with restricted	
4.12	diffusion in the territory of MCA matched to	87
	PWI lesion	
4.13	DWI-PWI mismatch shows reversible	87
4.13	penumbra	87
	DWI demonstrates reduced diffusion	
4.14	within a portion of (MCA)– (ACA)	88
4.14	territory. PWI lesion matched with DWI	88
	in(MCA) and mismatched in (ACA)	
4.15	Diffusion-perfusion mismatch and the	89
4.13	stroke grows into the DWI–CBV	09
4.16	DWI&PWI show postischematic	92
4.10	hyperperfusion	
4.17	Case(1)	96
4.18	Case(2)	98
4.19	Case(3)	99
	CTP shows increase of BBB	
4.20	permeability& Corresponding delayed	104
4.20	nonenhanced CT scan of same section	
	shows infarct and HT	
4.21	DWI&DSE image show high ps.	
	Follow-up CT (obtained 48 hours later)	105
	shows an area of hemorrhagic	103
	transformation (HT)	

Eist of tables

Table No.	Title	Page No.
2.1	Stroke Syndromes	26
4.1	Normal values for perfusion parameters in brain tissue	73
4.2	Changes in perfusion parameters with increasing severity of circulatory impairment	73
4.3	Quick assessment of acute ischemic stroke	74
4.4	The characteristic appearance of acute ischemic infarction on ADC map, diffusion-weighted imaging and T2WI	84
4.5	Lesion volumes of diffusion and perfusion	85
4.6	Ischemic stroke sensitivity and specificity	102

INTRODUCTION AND AIM OF THE WORK

Introduction and aim of work

Introduction:

Stroke is a heterogenous syndrome caused by multiple disease mechanisms, all of which result in disruption of normal cerebral blood flow. broadly, stroke can be classified into two categories: ischemic and hemorrhagic. The former accounts for an estimated 80.85% of cases; the rest are hemorrhagic. Stroke is a leading cause of death in developed countries and one of the most common causes of long-standing disability (*Khandelwal*, 2008).

It is agreed that emergency, non-contrast-enhanced CT scanning of the brain accurately identifies most cases of intracranial hemorrhage and helps discriminate nonvascular causes of neurological symptoms e.g. (brain tumors) (Adams et al., 2007).

The National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator (NINDS rt-PA) Stroke Study demonstrated the efficacy of treatment with intravenous rt-PA (alteplase) started within three hours after the onset of symptoms and up to six hours after the onset of stroke (*Hacke et al., 2004*).

The major target of intervention in acute ischemic stroke treatment is the ischemic penumbra which can be evaluated both on CT images (on which it is evidenced by a discrepancy in perfusion parameters) and on MR images

INTRODUCTION AND AIM OF THE WORK

(on which it is indicated by a mismatch between diffusion and perfusion parameters) (Srinivasan et al., 2006).

Diffusion-weighted imaging (DWI) is widely used to investigate hyper acute cerebral ischemia detecting early ischemic abnormalities related to reduction of the apparent diffusion coefficient (ADC) of brain water (Meng et al., 2004).

Perfusion-weighted imaging (PWI) provides information about the hemodynamic status of brain tissue and detects regions with impaired cerebral perfusion. Perfusion MRI is useful for acute stroke because this technique evaluates the blood flow in the brain's microvasculature (capillaries) (Meng et al., 2004).

The combination of perfusion and diffusion images obtained during the same session enabled Warach et al. to report their findings on the penumbra in the acute ischemic stroke and thus establishing the mismatch concept (*Lövblad et al.*, 2004).

CT perfusion is a functional imaging technique that provides important information about capillary-level hemodynamic of the brain parenchyma in the evaluation of acute stroke. CT perfusion can be performed by monitoring the contrast agent through the cerebral vasculature. Changes in tissue attenuation that occur in the brain after contrast injection are measured. Post processing of the perfusion data allows the generation of color-coded maps of various perfusion parameters including cerebral blood

INTRODUCTION AND AIM OF THE WORK

flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and the time to peak (TTP). These maps generated depend on the algorithm of the CT perfusion data obtained (Konstas et al., 2009).

Aim of the work:

To compare the results and accuracy of CT perfusion versus MRI perfusion in diagnosis of hyper-acute stroke.

VASCULAR ANATOMY OF THE BRAIN

VASCULAR ANATOMY OF THE BRAIN

The mode of distribution of the vessels of the brain has an important bearing upon a considerable number of the pathological lesions, It is necessarily to understand the normal cerebrovascular anatomy, the significant arterial anastomoses and collateral circulatory patterns that should be considered during evaluation of acute stroke patient (Bell et al., 2008).

The brain is a highly vascular organ, its profuse blood supply characterized by a densely branching arterial network. The brain is supplied by two internal carotid arteries and two vertebral arteries which form a complex anastomosis (circulus arteriosus, circle of Willis) on the base of the brain (*Griffiths*, 2008).

Intracranial Arteries

I. Internal Carotid Artery:

The internal carotid artery (ICA) originates from the common carotid artery in the neck at the approximate level of the fourth cervical vertebra. The internal carotid arteries and their major branches essentially supply blood to the forebrain, with the exception of the occipital lobe (Gallucci et al., 2005).

VASCULAR ANATOMY OF THE BRAIN

- > <u>According to the latest classifications, it can be</u> <u>divided into seven segments:</u> (fig.1.1)
- Cervical portion (C1): it begins at the bifurcation of the common carotid, and runs upward to the carotid canal.
- Petrous portion (C2): it corresponds to the petrous portion of the temporal bone.
- Lacerum portion (C3): it extends from the endocranial carotid canal to the petrolingual ligament, and ascends in the carotid sulcus of the basisphenoid.
- Cavernous portion (C4): it is situated inside the cavernous sinus, forming the roof of the sinus.
- Clinoid Portion (C5): it is the shortest part of the ICA, completely intradural.
- Ophthalmic portion (C6): it ends proximal to the posterior communicating artery origin.
- Communicating portion (C7): it ends by giving its terminal branches, anterior cerebral artery (ACA) and middle cerebral artery (MCA) (Bouthillier et al., 2005).

Figure (1.1): MRA of ICA segments (Quoted from Osborn, 2006).

VASCULAR ANATOMY OF THE BRAIN

The following are the branches of the internal carotid artery, listed by segment:

C1: Branches from the cervical portion: - none.

C2: Branches from the petrous portion:

- ♦ Vidian artery (artery of pterygoid canal) anastomoses with external carotid artery(ECA)
- ♦ Caroticotympanic artery (supplies middle ear)

C3: Branches from the lacerum portion: – none.

C4: Branches from the cavernous portion:

- ♦ Meningohypophyseal trunk (arise from posterior genu, supplies pituitary, tentorium and clival dura).
- ❖ Introlateral trunk arises from horizontal segment, supplies cavernous sinus dura / cranial nerves; anastomoses with ECA branches through F.rotundum, spinosum, ovale.

C5: Branches from the clinoid portion: – none

C6: Branches from the ophthalmic portion:

- ♦ Ophthalmic artery from anterosuperior ICA, passes through optic canal to orbit; gives off ocular, lacrimal, muscular branches.
- ♦ Superior hypophysial artery courses posteromedially; supplies anterior pituitary, infundibulum, optic nerve/ chiasm).