

Optimization of real power loss and voltage stability index of distribution systems with distributed generation

By

Mahmoud Elsaid Mohamed Dawod

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Electrical Power and Machines Engineering

Optimization of real power loss and voltage stability index of distribution systems with distributed generation

By Mahmoud Elsaid Mohamed Dawod

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Zeinab H. M. Osman

Dr. Moustafa Ahmed Elshahed

Professor of Power Systems

Assistant professor

Electrical Power and Machines Department, Faculty of Engineering, Cairo University

Electrical Power and Machines Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Optimization of real power loss and voltage stability index of distribution systems with distributed generation

By Mahmoud Elsaid Mohamed Dawod

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Zeinab Mohamed Osman, Thesis Main Advisor

Prof. Dr. Mostafa Ahmed El Shibini, Internal Examiner

Prof. Dr. Ebtisam Mostafa Mohamed Saied, External Examiner Electrical Power and Machines Department, Shoubra Faculty of Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Mahmoud Elsaid Mohamed Dawod

Date of Birth: 14/1/1986 **Nationality:** Egyptain

E-mail: Eng_mody1986@ yahoo.com

Phone: 01092405208
Address: Heliopolis-cairo
Registration Date: 1 / 10 / 2012.
Awarding Date: / 2017.
Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Zeinab H. M. Osman Dr. Moustafa Ahmed Elshahed

Examiners:

Prof. Dr. Ebtisam Mostafa Mohamed Saied

(External examiner) Electrical Power and Machines

Department, Shoubra Faculty of Engineering

Prof. Mostafa Ahmed El Shibini (Internal examiner)

Porf. Dr. Zeinab H. M. Osman (Thesis main

advisor)

Title of Thesis:

Optimization of real power loss and voltage stability index of distribution systems with distributed generation

Kev Words:

Distributed Generation (DG) ; Multi objective optimization ; Voltage stability index ; Distribution system losses

Summary:

The main goal of this thesis is determination of the best location and size of distributed generation unit that improves voltage stability index and reduces the distribution system losses. A methodology has been developed to realize this goal. The multi objective optimization subjected to a set of constraints and using genetic algorithm has been utilized. For verification of this methodology, it has been applied on standard test systems, namely IEEE 33-bus system and IEEE 69-bus system. The deduced results are compared with that given in the literature.

Insert photo here

Acknowledgments

It's my honor to extend mythanks and gratitude to my supervisors**Prof. Zeinab H.**Osman and Dr. Moustafa Elshahed for their excellent thesis supervision. The success which I achieved is due to my supervisors because they were always supporting me. My family and friends also give me agreat hope to end my work and reach to the success. They were always supporting me. I am grateful to all of them.

Dedication

I dedicate this thesis to my parents , my sister , my brother and my best friends.

•

Table of Contents

ACKNOWLE	DGMENTS]
DEDICATION	N	II
	ONTENTS	
	LES	
LIST OF FIGU	URES	VI
NOMENCLA	ΓURE	IX
ABSTRACT		X
CHAPTER 1:	INTRODUCTION	1
1.1.	Back ground	1
1.2.	Advantages of distributed generation	
1.2.1.	Reliability	
1.2.2.	Power Quality	
1.2.3.	Economy of Scale	
1.2.4.	Diversity	
1.2.5.	Efficiency	
1.3.	Thesis objectives	
1.4.	Thesis Outline	
CHAPTER 2:	LITERATURE REVIEW	
2.1.	Introduction	3
2.2.	Types of distributed generation sources	
2.2.1.	Photovoltaics(PV)	
2.2.2.	Fuel cell	
2.2.3.	Wind turbines	5
2.2.4.	Micro-turbines	5
2.2.5.	Reciprocating internal combustion engine (ICE)	5
2.2.6.	Storage Devices	5
2.3.	System stability	6
2.3.1.	Power system stability	6
2.3.2.	Voltage stability	
2.3.3.	Analysis of voltage stability	
2.3.4.	Static analysis	
2.3.4.1.	P-V and Q-V curves	
2.3.4.2.	V-Q sensitivity analysis	
2.4.	Voltage stability index(VSI)	
2.5.	Load Flow Study	15

2.6.	Methods for sizing and siting of DGs units	18
CHA	APTER 3: PROBLEM FORMULATION AND DEVELOPED	
ALGORITHM	М	20
3.1.	Introduction	20
3.2.	Problem objective function	20
3.3.	Constraints	21
3.4.	Developed methodology	21
CHAPTER 4	:APPLICATIONS AND RESULTS	23
4.1.	Results of load flow studies at base case	24
4.1.1.	IEEE 33- Bus system	
4.1.2.	IEEE 69- Bus system	25
4.2.	DG allocation	28
4.2.1.	Case (I) Minimization of losses	28
4.2.1.1.	By using analytical method	28
4.2.1.2.	By using genetic method	28
4.2.2.	Case (II) maximize voltage stability index of the system	45
<i>4.2.3.</i>	Minimization of losses and maximization of VSI simulteveously	57
4.2.3.1.	Minimization of losses and maximization of VSI in 33-bus system	58
4.2.3.2.	Minimization of losses and maximization of VSI in 69-bus system	61
4.3.	Discussions	84
CHAPTER 5	CONCLUSION AND FUTURE WORK	85
Future work.		85
REFERENCI	ES	86
APPENDIX A	A: IEEE 33-BUS SYSTEM DATA	90
APPENDIX I	B: IEEE 69-BUS SYSTEM DATA	 91

List of Tables

Table 2. 1: Comparision between different types of VSI	12
Table 4. 1 : Load flow results of 33-bus system	23
Table 4. 2 : Load flow results of 69-bus system	24
Table 4. 3: Results of inserting DG unit at bus numer 6 in 33-bus system	35
Table 4. 4: Results of inserting DGs unit at bus number 61 in 69-bus system	36
Table 4. 5 : Results of inserting DG unit at bus number 18	46
Table 4. 6: results of inserting DG unit at bus number 65 in 69-bus system	47
Table 4.7: Results of inserting DGs units using MOG in 33-bus system	60
Table 4. 8: Results of inserting DGs units using MOGA in 69-bus system.	63
Table 4.9: Results of inserting DGs units using MGOA	65
Table 4. 10: Results of inserting DGs units using MGOA and fuzzy ranking	66
Table 4. 11: Different cases of 33-bus system	81
Table 4. 12 : Different cases of 69-bus system	82
Table 4. 13: Comparison with other references	83

List of Figures

Figure 2. 1: Distributed generation sources	4
Figure 2. 2: Single line diagram of generator supplying P-Q load	7
Figure 2. 3: P-V curve	8
Figure 2. 4: V-Q curve	10
Figure 2. 5: Single line diagram supplying load at its end	13
Figure 2. 6: Sample of 6-bus system	16
Figure 3.1: The flow chart of developed methodology	22
Figure 4. 1: IEEE 33-bus system	23
Figure 4. 2: IEEE 69-bus system	24
Figure 4. 3: System losses versus bus number of DG location of 33-bus system by GA	29
Figure 4. 4: System losses versus bus number of DG location of 33-bus system by AL	29
Figure 4. 5: System losses versus bus number of DG location of 69-bus system by GA	30
Figure 4. 6: System losses versus bus number of DG location of 69-bus system by AL	30
Figure 4. 7: DG value in MW versus bus number in 33-bus system by GA	31
Figure 4. 8: DG value in MW versus bus number in 33-bus system by AL	32
Figure 4. 9: DG value in MW versus bus number in 69-bus system by GA	33
Figure 4. 10: DG value in MW versus bus number in 69-bus system by AL	34
Figure 4. 11: Bus voltage versus bus number in 33-bus system for lateral(A) (DG	38
penetration at bus 6).	
Figure 4. 12: Bus voltage versus bus number in 33-bus system for lateral (B) (DG	38
penetration at bus 6).	
Figure 4. 13: Bus voltage versus bus number in 33-bus system for lateral (C) (DG	39
penetration at bus 6).	
Figure 4. 14: Bus voltage versus bus number in 33-bus system for lateral (D) (DG	39
penetration at bus 6).	4.0
Figure 4. 15: Bus voltage versus bus number in 69-bus system for lateral (A) (DG	40
penetration at bus 61).	40
Figure 4. 16: Bus voltage versus bus number in 69-bus system for lateral (B) (DG	40
penetration at bus 61).	41
Figure 4. 17: Bus voltage versus bus number in 69-bus system for lateral (C) (DG	41
penetration at bus 61).	41
Figure 4. 18: Bus voltage versus bus number in 69-bus system for lateral (D) (DG	41
penetration at bus 61).	40
Figure 4. 19: Bus voltage versus bus number in 69-bus system for lateral (E) (DG	42
penetration at bus 61).	40
Figure 4. 20: Bus voltage versus bus number in 69-bus system for lateral (F) (DG	42
penetration at bus 61).	12
Figure 4. 21: Bus voltage versus bus number in 69-bus system for lateral (G) (DG	43
penetration at bus 61).	43
Figure 4. 22: Bus voltage versus bus number in 69-bus system for lateral (H) (DG	43
penetration at bus 61). Figure 4. 23: VSI versus bus number in 33-bus system (DG penetration at bus 6)	44
Figure 4. 23: VSI versus bus number in 69-bus system (DG penetration at bus 6)	44 45

Figure 4.25: Bus voltage	versus bu	s number	in 3	33-bus system	for lateral (A)) (DG	49
penetration at bus 18).							
Figure 4.26: Bus voltage	versus bu	s number	in 3	33-bus system	for lateral (B)) (DG	49
penetration at bus 18).	vamana bu		: <i>′</i>	22 has greaten	for lotarel (C) (DC	50
Figure 4.27: Bus voltage penetration at bus 18).	versus du	s number	ш	55-bus system	ior iaterai (C) (DG	30
Figure 4.28: Bus voltage	versus bu	s number	in 3	33-bus system	for lateral (D) (DG	50
penetration at bus 18).					(, (= -	
Figure 4. 29: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (A	a) (DG	51
penetration at bus 65). Figure 4. 30: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (B	3) (DG	51
penetration at bus 65).							
Figure 4. 31: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (C	(DG	52
penetration at bus 65).	1		•	60 1	f 1-41 (F), (DC	50
Figure 4. 32: Bus voltage penetration at bus 65).	versus bi	is number	ın	69-bus system	ior lateral (L)) (DG	52
Figure 4. 33: Bus voltage	versus hi	ıs number	in	69-hus system	for lateral (E	DG	53
penetration at bus 65).	versus or	as nameer	11.1	or ous system	ioi miciui (L	<i>a)</i> (DG	33
Figure 4. 34: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (F	(DG	53
penetration at bus 65).							
Figure 4. 35: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (C	G) (DG	54
penetration at bus 65).							
Figure 4. 36: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (H	I) (DG	54
penetration at bus 65).	. 1	. 22.1					
Figure 4. 37: VSI versus 1				•			55 56
Figure 4. 38: VSI versus 1 Figure 4. 39: Pareto Front				•	and 18 in 33.	hue evetem	58
Figure 4. 40: Pareto Front							59
and 18 in 33-bus system.	. III case (11 2 DOS 1	11a v 1	ng 1 and Q po	wer at buses	number o	37
Figure 4. 41: Pareto Front	in case o	of 2 DGs :	at hi	ises 61 and 65	in 69-hus sy	stem	61
Figure 4. 42: Pareto Front					•		62
69-bus system.				-8 (1-			-
Figure 4. 43: Bus voltage 6,18).	versus bi	ıs number	in	33-bus system	for lateral (A	a) (DGs at bus	67
Figure 4. 44: Bus voltage	versus bi	ıs number	in	33-bus system	for lateral (B	B) (DGs at bus	67
6,18).	versus o	as marineer		55 Gus system	ioi miciai (E) (BGS at ous	07
Figure 4. 45: Bus voltage	versus bi	ıs number	in	33-bus system	for lateral (C	C) (DGs at bus	68
6,18).				J	`		
Figure 4. 46: Bus voltage	versus bi	ıs number	in	33-bus system	for lateral (D	(DGs at bus	68
6,18).							
Figure 4. 47: Bus voltage	versus bi	ıs number	in	69-bus system	for lateral (A	(DGs at bus	69
61,65).							
Figure 4. 48: Bus voltage	versus bi	us number	in	69-bus system	for lateral (B	B) (DGs at bus	69
61,65).	1	1		60.1	C 14 140	DC 1	70
Figure 4. 49: Bus voltage	versus bi	ıs number	ın	oy-bus system	ior lateral (C) (DGs at bus	70
61,65). Figure 4. 50: Bus voltage	versus h	is number	in	69-hus system	for lateral (F)) (DGs at hus	70
1 15ulc T. JU. Dus Vullage	ACTORS DI	in initiodi	ш	UJ-UUS SYSICIII	ioi iaiciai (L	, (DOS at Dus	70

61,65).	
Figure 4. 51: Bus voltage versus bus number in 69-bus system for lateral (E) (DGs at bus	71
61,65).	
Figure 4. 52: Bus voltage versus bus number in 69-bus system for lateral (F) (DGs at bus	71
61,65).	
Figure 4. 53: Bus voltage versus bus number in 69-bus system for lateral (G) (DGs at bus	72
61,65).	
Figure 4. 54: Bus voltage versus bus number in 69-bus system for lateral (H) (DGs at bus	72
61,65).	
Figure 4. 55: VSI versus bus number in 33-bus system (DGs at buses6,18)	73
Figure 4. 56: VSI versus bus number in 69-bus system(DGsat buses 61,65)	74
Figure 4. 57: VSI versus bus number for 33-bus system for different cases	75
Figure 4. 58: VSI versus bus number for 69-bus system for different cases	76
Figure 4.59: KW losses versus different cases for 33 bus system.	77
Figure 4.60: KW losses versus different cases for 69-bus system.	78
Figure 4.61: The total DGs size versus different cases in 33-bus system.	79
Figure 4.62: The total DGs size in MW versus different cases for 69-bus system.	80

Nomenclature

AL Analytical method DG Distributed generation

Vector with all zero entries except for a C in the C-th raw e_{c}

FC

FVSI Novel fast voltage stability index

Genetic algorithm GA i Second order index

The value of $\delta_{max}/\frac{d\delta_{max}}{dc_{total}}$ in the base case i_0

The system load variation $\mathsf{C}_{\mathsf{total}}$ Jacobian of load flow equation

Matrix obtained from J substituting the C-th row by e_C^T J_{CC}

L index L_j

Line stability Index $\substack{L_{mn}\\ \text{LQP}}$ Line Stability Index Micro turbines MT**Photovoltaics** PV Test function t_{cc} Tangent vector TVI_i

VSI Voltage stability index

VCPI Voltage collapse proximity indicators

 V^t The transpose of voltage

 dV_i The entry in the tangent vector $\frac{dx}{d\lambda}$ corresponding dλ

to the bus voltage magnitude V_i

λ Parameter vector represents real and reactive power

demands at each load bus.

WTs Wind turbines

The maximum singular value of J^{-1} δ_{max}

Abstract

The increasing of energy demand causes more stresses on the transmission and generation systems. The operation of the conventional power system causes massive amount of transmission loss. In addition, the problem of exhaustion of fossil fuel and global warming have reinforced the use of the less environmentally-polluting distributed generation units (DG). The conjunction of DG units into the distribution systems will change the traditional power flow from a unidirectional flow to a bidirectional flow. However, siting of these units has to be studied for realizing economical and technical advantages for distribution systems. The installation of DG at random location with non optimized size will cause increasing of system losses and low voltage profile and this would increase the cost. The energy of DG units will compensate some of the energy demand of the consumers. Therefore, the sizing and position of DG units have to be carefully studied. The problem is formulated as multi objective functions having a number of constraints also genetic algorithm is utilized to solve this problem. A methodology is applied to achieve this purpose. For verification of this methodology, it has been tested by applying it on standard test systems, namely IEEE 33-bus system and IEEE 69-bus system. Further, the deduced results are compared with that given in the literature.

Chapter 1: Introduction

1.1. Back ground

Increasing of power demand causes more stress on transmission and generation systems that may lead to power outage. Different methods are developed to upgrade security and the reliability of the electrical power systems. When the distribution system is overloaded then the power outages will occur. This will costs millions of L.E. per year. There are new technologies authorise the production of electrical energy in reliable and secure method and will cause a fewer damage to the surrounding environment.One of these solutions is building generation close to the power consumption places. This generation called distributed generation (DG) .The distribution sector had given a large scope for using the distributed generation resources which will improve the system performance. Always the large concentration of generation stations is near to the biggest demand of power or loads. If the loads were far away from the generation station the consumer will face drop in voltage and the outage problem. The advantages of (DG) units can be only obtained by selecting the suitable size of the DG and putting it at suitable location in the power system. Distributed generation units have effects on the voltage profile and consequently losses and voltage stability of the system which contains them. DG penetration can be defined as the total amount of DG within a distribution network divided by the total network capacity.

1.2. Advantages of distributed generation

Alarge number of countries used DG units to supply some of their electrical energy needs. Some of Utilities used DGs unit to get the distribution system efficiency better. Also some of consumers have used DGs to minimize their demand costs, and some consumers have used DGs to minimize the polluted emissions from their power supply.

1.2.1. Reliability

Storm has alarg risk on the grid and when it occurs, it usually causes power outage for alarge number of customers without power for long time. When Hurricane Sandy strick the east coast, a few people who have solar panels were supplying emergency power to their neighbors.

1.2.2. Power Quality

It is found that the power quality of the power system can be determined by many aspects as examples the voltage profile and the system losses compare to the system