

Ain-Shams University
Faculty of Medicine
General Surgery Department

ROLE OF SIMPLE INFLAMMATORY MARKERS IN DIAGNOSIS OF ACUTE APPENDICITIS IN CHILDREN Thesis

Submitted for partial fulfillment of the MD degree in general surgery

Presented by

Ahmed Raafat Abd El-Aziz Negm

M.B., B.Ch; M.Sc.,

Supervised by

Professor Dr. Alaa El-Din Ismail

Professor of General Surgery Faculty of Medicine, Ain Shams University

Professor Dr. Osama Fouad Mohammed

Professor of General Surgery
Faculty of Medicine, Ain shams university

Dr. Ahmed Gamal El-Din Osman Farg

Lecturer of general surgery
Faculty of medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

Abstract: Acute appendicitis represents one of the most common abdominal emergencies in children. If untreated can lead to generalized peritonitis. It is often difficult and challenging even for the most experienced surgeon to make a definite diagnosis in pediatric patients. Inflammatory markers like Total Leukocyte count (TLC) and C-reactive protein (CRP) and Neutrophil Ratio (NR) can help in making an early and accurate diagnosis in difficult cases. **Objective:** To evaluate the importance of serum CRP level estimation, TLC and Neutrophils ratio in the accurate diagnosis of acute appendicitis, by comparing with the final histopathological diagnosis. Study Design: This study was designed to be a crosssectional study with non-probability purposive sampling. Subjects and Methods: This study was performed on 50 patients who have been clinically diagnosed as acute appendicitis on the basis of presenting symptoms and signs and who were posted for appendectomy in Department of General Surgery of Shibin El-kom Teaching hospital El Menofya, Egypt in the period of 1st January 2013 to 31st July 2014. All patients from 4-18 years of age fulfilling the inclusion criteria were admitted for this study. We estimated pre-operative serum CRP level, TLC and Neutrophil Ratio in all patients. Postoperatively the histological results were differentiated into non-inflammed and inflamed appendix. **Results:** The mean age of the patients was 11.8 ±3.2 years. Histopathology showed that 40(80 %) patients had inflamed appendix. Diagnostic accuracy of WBC count, neutrophil ratio and C-reactive protein was 74%, 72% and 88% respectively. Diagnostic accuracy of combining C-reactive protein, WBC count and neutrophil ratio was 100%. **Conclusion:** TLC and C-reactive protein and neutrophils ratio can provide help in making accurate diagnosis of acute appendicitis. The significance of combining the tests and their role in diagnosing acute appendicitis is found to be very high.

Key Words: Acute appendicitis, Total leukocyte count, C-reactive protein and neutrophils ratio

Acknowledgments

Praise is to Allah, who has guided us to this, never could we have found guidance, had it not been for the guidance of Allah.

My deep and sincere gratitude and appreciation is to the Caring doctor, Disciplined teacher and Honorable man, Prof. Dr. Alaa El-Din Ismail, professor of General Surgery, faculty of medicine, Ain-Shams University.

I would like to thank Prof. Dr. Osama Fouad Mohammed, professor of General Surgery, faculty of medicine, Ain-Shams University, for his advices and help with this work,

Deep thanks to Dr. Ahmad Gamal El-Din, the lectural of General Surgery, faculty of medicine, Ain-Shams University, for his time, effort and support.

I should never forget to thank my family, I owe them a lot.

Table of Contents

Acknowledgments	iv
Table of Contents	v
List of Abbreviations	vi
List of Figures	vii
List of Tables	ix
Introduction	1
Aim of the Work	4
Review of the Literature	5
Anatomy and Embryology	5
HISTOLOGY	9
HISTORICAL BACKGROUND OF APPENDICITIS	11
ETIOPATHOGENESIS	12
Pathology	13
DIFFERENTIAL DIAGNOSIS OF AA IN CHILDREN	16
DIAGNOSIS OF AA IN CHILDREN	20
INVESTIGATIONS OF ACUTE APPENDICITIS IN CHILDREN	28
TREATMENT OF ACUTE APPENDICITIS IN CHILDREN	41
INFLAMMATORY MARKERS IN DIAGNOSIS OFA A	47
Patients and Methods	57
Results	62
Discussion	81
Summary	99

Conclusion	101
References	102
Arabic summary	114

List of Abbreviations

AA	Acute Appendicitis		
AIR	Acute appendicitis Response Score		
cm	Centimeter		
CRP	C-reactive protein		
CT	Computerized Tomography		
GALT	Gut-Associated Lymphoid Tissue		
HPE	Histopathological Examination		
NR	Neutrophil Ratio		
PAS	pediatric appendicitis score		
PPP	primary proliferative polycythaemia		
RLQ	Right Lower Quadrant		
US	Ultra sonography		
TLC	Total Leukocytic Count		
UTI	Urinary Tract Infection		
WBCC	White Blood Cell Count		
WBC	White Blood Count		
\mathbf{X}^2	Chi square		

List of Figures

Figure 1 Variations in topographic position of the appendix6
Figure 2 Blood supply of Appendix7
Figure 3 Normal histology of appendix10
Figure 4 Probability of appendicitis by the Alvarado score24
Figure 5 A fecalith in the right iliac fossa in patient of suspected AA34
Figure 6 Ultrasound of the RLQ of the abdomen36
Figure 7: CT scan showing perforated appendix with collection37
Figure 8 Visualization of the Normal Appendix in Children38,39
Figure 9 Steps in an open appendectomy45
Figure 10 Steps in an open appendectomy46
Figure 11 Steps in an open appendectomy46
Figure 12 Symptoms of appendicitis67
Figure 13 Signs of appendicitis
Figure 14: Distribution of types of appendix70
Figure 15: Role of WBC count72

Figure 16: Role of neutrophil count74
Figure 17: Role of C-reactive protein76
Figure 18: Role of combining C-reactive protein and WBC count78
Figure 19: Role of combining CRP, WBC count, neutrophil count80

List of Tables

Table 1:	ACUTE APPENDICITIS RESPONSE SCORE (AIR) AND ALVARADO 25
Table 2:	COMPARISON OF (MANTRELS) SCORE AND (PAS)26
Table 3:	PAEDIATRIC NORMAL RANGES. FULL BLOOD COUNTS
Table 4:	Age distribution
Table 5:	WBC AND GENDER CROSSTABULATION63
Table 6:	CRP AND GENDER CROSSTABULATION64
Table 7:	NEUTROPHIL PERCENT AND GENDER CROSSTABULATION 65
Table 8:	DISTRIBUTION OF SYMPTOMS AND SIGNS
Table 9:	Distribution of cases as per histopathological report69
Table 10:	HPE results69
Table 11:	MALE TO FEMALE RATIO IN NORMAL HPE OF APPENDIX70
Table 12:	ROLE OF WBC COUNT71
Table 13:	ACCURACY OF WBC COUNT72
Table 14:	ROLE OF NEUTROPHIL73
Table 15:	ACCURACY OF NEUTROPHIL74
Table 16:	ROLE OF C-REACTIVE PROTEIN75
Table 17:	ACCURACY OF CRP
Table 18:	ROLE OF COMBINING C-REACTIVE PROTEIN AND WBC COUNT77
Table 19:	ACCURACY OF COMBINING C-REACTIVE PROTEIN AND WBCC78

Table 20:	Role of combining CRP, WBC count and neutrophil count79
Table 21:	ACCURACY OF COMBINING CRP, WBCC AND N%80
Table 22:	COMPARISON OF ACCURACY OF CLINICAL DIAGNOSIS IN (AA)85
Table 23:	COMPARISON OF ROLE OF WBCC IN DIAGNOSIS OF (AA)88
Table 24:	COMPARISON OF ROLE OF NR IN DIAGNOSIS OF (AA)89
Table 25:	COMPARISON OF ROLE OF CRP IN DIAGNOSIS OF (AA)92
Table 26:	COMPARISON OF ROLE OF COMBINING CRP,TLC,N%95

Introduction

Acute appendicitis is accounting for 10% of all abdominal surgeries and one third of all pediatrics hospital admissions with acute abdominal pain. It is the most frequent cause of persistent and progressive abdominal pain for all ages. (1)

In pediatric patients clinical diagnosis is often challenging even for experienced surgeons. In particular, children may present with different and nonspecific symptoms. Furthermore, the risk of progression to perforation in children is higher than in adults. Despite the introduction of sonography (US) and computed tomography (CT), the accuracy of diagnosis has improved only marginally highlighting the need for better diagnostic tools. (2)

It is generally accepted that appendectomy is the therapy of choice in children. Conservative management is not established for children although it is evaluated in some studies of adult patients. Risk of perforation and further complications increases with a delay in diagnosis of acute appendicitis (AA). On the other hand in young children, geriatric patients, and in adolescent females, the negative appendectomy rate may be as high as 50 %. Many attempts have been made to determine ways of decreasing the negative laparotomy rate after a clinical suspicion of AA. (3)

Acute right iliac fossa pain accurate diagnosis remains a difficult clinical problem as the differential diagnosis of such a pain is not straight forward. In spite of development of various diagnostic scores and diagnostic aids like C-reactive proteins (CRP), the diagnosis has been confusing for the clinician as no laboratory or radiological test is 100% accurate. (4)

Inflammatory markers such as White Blood Count (WBC) or serum CRP concentration are simple and useful tests utilized in diagnosing appendicitis. These markers have been reported to elevate reflecting the severity of appendicitis. (5)

Serum CRP concentration is the most widely estimated of the acute phase proteins in pediatric patients. After 6 to 12 hours of inflammation the concentration begins to rise and may increase a hundredfold. In patients whose symptoms had lasted less than 24 hours WBC count had a high sensitivity while in those in whom they had lasted more than 24 hours CRP had a high sensitivity. (3)

The combined presence of normal WBCC and CRP in a patient makes the diagnosis of acute appendicitis highly unlikely in spite of the decreased specificity of WBCC (White Blood Cell Count) and CRP in confirming acute appendicitis in children and adults. ⁽⁶⁾

Total Leukocytic Count (TLC) is easily available test and not very expensive. Almost all laboratories round the clock can do it. Various studies have been published on the evaluation of role of Leukocytosis in the diagnosis of acute appendicitis. The diagnostic accuracy of TLC is increased further if combined with CRP and neutrophil count. (1)

To reduce the perforation rate significantly, WBC count, CRP, and Neutrophil count are added to the clinical variables. Body temperature repeated control and laboratory examinations in combination with clinical re-examinations were of benefit in the management of patients with equivocal signs of appendicitis. (3)