

FACULTY OF ENGINEERING

Mechanical Power Engineering

Studying the Characteristics of Heat Pipe Heat Exchangers in Air Conditioning Systems

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

Submitted by

Ahmed Mohamed Farouk Ahmed Hamed Mousa

Bachelor of Science in Mechanical Engineering

(Mechatronics Engineering)

Ain Shams University, 2007

Supervised By

Prof. Mahmoud Mohamed Abo El-Nasr

Prof. Mahmoud Mohamed Kamal

Dr. Hany El-Sayed Abd El-Haleim

Cairo - (2017)

FACULTY OF ENGINEERING

Mechanical Power Engineering

Studying the Characteristics of Heat Pipe Heat

Exchangers in Air Conditioning Systems

By

Ahmed Mohamed Farouk Ahmed Hamed Mousa

Bachelor of Science in Mechanical Engineering

(Mechatronics Engineering)

Faculty of Engineering, Ain Shams University, 2007

Examiners' Committee

Signature

Date: 27 February 2017

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Ahmed Mohamed Farouk Ahmed Hamed Mousa

Signature

Date:

27 February 2017

Researcher Data

Name : Ahmed Mohamed Farouk Ahmed

Date of birth : 09/August/1985

Place of birth : Jeddah, Saudi Arabia

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Engineering

University issued the degree : Ain Shams University

Date of issued degree : June, 2007

Current job : Design Engineer at SHAKER

Consultancy Group

Thesis Summary

Thesis subject: studying the characteristics of heat pipe heat exchangers in air conditioning systems

In this thesis a study has been made on a heat pipe heat exchanger used in heat recovery. The test rig has been built to simulate the same conditions of the heat recovery systems in air conditioning applications. In these systems, the heat pipe-heat exchanger is considered one of the best solutions especially in hospitals and laboratories in which zero cross contamination is required.

The measured data acquired from the test rig were analyzed to evaluate the thermal behavior and effectiveness of the heat exchanger.

Cold and hot air ducts have been connected to a heat pipe heat exchanger. The first two experiments have been carried out by changing the hot air inlet temperature from $32 \sim 55$ °C.

The inlet cold air temperatures has been maintained constant at 26 °C in one experiment and 28 °C in the other one.

Another three experiments have been carried out, by changing the ratio of the air mass flow rates between the cold and the hot air from 1 to almost 2, whilst the temperature of the cold air remained constant at 26 °C. Also the hot air temperature is maintained constant at either 35 °C, 40 °C and 45 °C. Hence for each experiment the thermal performance and effectiveness of the heat recovery system were investigated.

The results indicate that when the hot (fresh) air temperature increases, the temperature difference of the hot and cold air streams increase.

The effectiveness of the evaporator was increased up to almost 39 % due to increasing the hot air temperature to 55 °C.

The effectiveness of the heat pipe evaporator section was subjected to a positive effect with changing the mass flow ratios. It is also found that the fresh (hot) air temperature has a great effect on enhancing the heat transfer performance of evaporator part of heat pipes heat exchanger.

Key words:

Heat pipe, Heat exchanger, Heat recovery, Air conditioning

Acknowledgment

In appreciation and gratitude

To:

My supervision team

Prof. Mahmoud Mohamed Abo El-Nasr

Prof. Mahmoud Mohamed Kamal

Dr. Hany El-Sayed Abd El-Haleim,

The wonderful and helpful staff of Ain Shams University, teaching assistants and lab technicians,

SHAKER CONSULTANCY GROUP,

and all my family

For their continuous support and gracious consideration

All of them had made a difference in my life, and pushed me forward, thank you all

February 2017

Table of Contents

1.	CHAPTI	ER 1: INTRODUCTION	14
	1.1 Tecl	hniques for heat recovery inside building	15
	1.1.1	Fixed plate heat exchanger	16
	1.1.2	Enthalpy wheel	18
	1.1.3	Coil energy recovery (run around loops)	20
	1.1.4	Heat pipe heat exchangers	21
	1.2 Hea	t Pipes	25
	1.2.1	Construction of heat pipe	25
	1.2.2	Theory of operation of heat pipes	27
	1.2.3	Types of heat pipes	28
	1.2.4	Applications of heat pipes	31
	1.2.5	Advantages of heat pipes	32
	1.2.6	Selection limits of heat pipes	33
	1.3 The	sis outlines	34
2.	CHAPTI	ER 2: LITERATURE REVIEW	36
	2.1 Intr	oduction	36
		earch and studies for characteristics of the heat pipe heat ϵ	_
		ergy recovery systems	
3.	CHAPTI	ER 3: EXEPRIMENTAL TEST RIG	59
	3.1 Intr	oduction	59
	3.2 Lay	out and components of the test rig	59
	3.2.1	Air Ducts	62
	3.2.2	Air Fans	66
	3.2.3	Refrigeration unit	68
	3.2.4	Electric heaters	70
	3.2.5	Variable auto transformer (Variac)	72

	3.	2.6	Measuring devices	73
	3.	2.7	Heat pipe heat exchanger	76
4	. Cl	HAPT	ER 4: EXEPRIMENTAL PREOCEDURES and CALCULATIONS	79
	4.1	Intr	oduction	79
	4.2	Ехр	erimental procedures	80
	4.	2.7	Changing hot fresh air temperature experiments	. 80
		2.2 perim	Changing the ratios of mass flow rate between cold and hot air ents	. 83
	4.3	Equ	ations & Calculations	88
	4.3	3.1	Temperature difference across the heat pipe heat exchanger	. 88
	4.	3.2	Effectiveness across the heat pipe heat exchanger	. 89
	4.	3.3	Reynolds number	94
	4.	3.4	Nusselt number	95
	4.1	Ехр	eriments comparison table	96
5	. Cl	HAPT	ER 5: RESULTS and DISCUSSIONS	. 97
	5.1	Intr	oduction	97
	5.2	Ten	nperature Difference Change Study	98
	5	2.1	Experiment No.1	98
	5.	2.2	Experiment No.2	101
	5	2.3	Experiment No.3	104
	5.	2.4	Experiment No.4	L07
	5	2.5	Experiment No.5	110
	5.3	Effe	ectiveness Study 1	114
	5.	3.1	Experiment No.1	115
	5.	3.2	Experiment No.2	118
	5.	3.3	Experiment No.3	122
	5.	3.4	Experiment No.4	125
	5.	3.5	Experiment No.5	128
	5.4	Cor	nparison with Previous Studies1	133
	Co	mpari	son between current study and [8]1	133

0.	СПАН	PIER 6: CUNCLUSIONS AND RECOMMENDATIONS	137
	6.1	Conclusions	137
	6.2	Recommendations for Future Work	139
Ref	erences		140
Apr	endix 2	A	141
• •		B	
		E	
• •			
• •		F	
App	endix (G	150
		List of Figures	
Figu	ıre 1-1.	Cross flow plate air to air heat exchanger as described in [1]	17
		Rotary wheel heat exchanger	
_		Coil energy recovery loop	
_		Heat pipe heat exchanger assembly	
Figu	are 1-5,	Heat pipe heat exchanger assembly with tilt control mechanism	24
Figu	are 1-6,	Heat pipe operation	27
Figu	are 1-7,	Vapor chamber heat pipe	28
Figu	are 1-8,	Loop heat pipe	29
Figu	are 1-9,	Pulsating heat pipe	30
		schematic of a conventional heat pipe model used in the computer	
sim	ulation.		39
Figu	are 2-2,	schematic for heat exchanger and air flow of [6]	40
Figu	are 2-3,	Schematic for test rig of [6]	41
Figu	are 2-4,	Air flow arrangement schematic, [7]	42
_		Test rig schematic, [7]	
Figu	ıre 2-6,	Finned copper thermosyphon heat exchanger effectiveness for diffe	erent
rate	of pow	ver, [7]	44
Figu	are 2-7,	Test rig used in [8]	46
Figu	are 2-8,	Heat pipe heat exchanger designed in [8]	46
Figu	ıre 2-9,	Effect of hot air temperature and mass flow ratio on ΔT and $\epsilon,$ [8] .	47
Figu	are 2-10	O, Schematic of the heating system, [9]	49
Figu	are 2-11	1, Schematic of the heat exchanger, [9]	49
Figu	are 2-12	2, Variation of the rate of heat transfer with exhaust gas temperature	50
Figu	are 2-13	3, Schematic for the test rig, [10]	51

Figure 2-14, Enthalpy change against face velocity for air passing over the co	ooling
section	52
Figure 2-15, Schematic diagram of the test chamber of [11]	53
Figure 2-16, Effect of air velocity, fin shape and pipe arrangement on the	
effectiveness of the heat pipe heat exchanger	54
Figure 2-17, Effect of air velocity, on the pressure loss coefficient	55
Figure 2-18, Experimental platform of the HPHE of	57
Figure 2-19, Effect of fresh air inlet temperature on ε of R141b fluid with different contents.	ferent
low rates	57
Figure 2-20, Effect of fresh air inlet temperature on ϵ with different working	fluids
	58
Figure 3-1, Experimental test rig components	60
Figure 3-2, Photograph of the laboratory test rig	62
Figure 3-3, Component no. 13 "0.1X0.1-0.3X0.3 reducer"	63
Figure 3-4, Component no. 14 and 17 "air duct 0.3X0.3 m2"	63
Figure 3-5, Component no.15 and 18 "0.3X0.3 m2 insulated duct"	64
Figure 3-6, Component no.16 "0.1X0.1-0.3X0.3 reducer"	65
Figure 3-7, Component no.16 "air duct 0.3X0.3 m2"	65
Figure 3-8, Photograph for the fan used	67
Figure 3-9, Photograph of the scaled suction of the fan used	67
Figure 3-10, Photograph for the condenser, compressor, cupper tubes and fan	for
condenser cooling.	68
Figure 3-11, Single stage vapor compression refrigeration cycle	69
Figure 3-12, Photograph for installation of the three heaters inside the air duc	t 70
Figure 3-13, Photograph for wiring of the heaters	71
Figure 3-14, Photograph for the used variable auto transformers	72
Figure 3-15, Four thermocouples installed at the inlet/outlet of the cold/hot ai	ir 73
Figure 3-16, Heat pipe heat exchanger construction details	77
Figure 4-1, Exp-1 test conditions	82
Figure 4-2, Exp-2 test conditions	83
Figure 4-3, Exp-3 test conditions	
Figure 4-4, Exp-4 test conditions	
Figure 4-5, Exp-5 test conditions	87
Figure 5-1, Effect of fresh air temperature on ΔT_C , ΔT_H , at constant T_{Ci} (26 °C)	
Figure 5-2, Effect of fresh air temperature on ΔT_C , ΔT_H , at constant T_{Ci} (28 °C)	
Figure 5-3, Effect of mass flow rate ratios, Re & Nu numbers on ΔT_C and ΔT	
35°C	1
Figure 5-4, Effect of mass flow rate ratios, Re & Nu numbers on ΔT_C and ΔT	
10°C	-

Figure 5-5, Effect of mass flow rate ratios, Re & Nu numbers on ΔT_C and ΔT_H 45°C	*
Figure 5-6, Effect of fresh air temperature on effectiveness (ε)	
Figure 5-7, Effect of fresh air temperature on effectiveness (ɛ)	
Figure 5-8, Effect of mass flow rate ratios, Re & Nu numbers on effectiveness	
$T_{Hi} = 35 ^{\circ}\text{C}$	
Figure 5-9, Effect of mass flow rate ratios, Re & Nu numbers on effectiveness	
$T_{Hi} = 40 ^{\circ}\mathrm{C}$	127
Figure 5-10, Effect of mass flow rate ratios, Re & Nu numbers on effectiveness	ss (ε),
$T_{Hi} = 45 ^{\circ}\mathrm{C}$	131
Figure 5-11, Effect of hot air temperature on ΔT for [8] and current study	133
Figure 5-12, Effect of mass flow rate ratios on ΔT for [8] and current study	134
Figure 5-13, Effect of fresh air temperature on ϵ for [8] and current study	135
Figure 5-14, Effect of mass flow rate ratios on ϵ for [8] and current study	136
List of Tables	
List of Tables	
Table 3-1, Air fan specifications	66
Table 3-2, Compressor specifications	69
Table 3-3, Thermocouples specifications	69 74
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications	69 74 76
Table 3-3, Thermocouples specifications	69 74 76 78
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters	69 74 76 78 96
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1	69 74 76 78 96 99
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2	69 74 76 98 99 101
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3	69 74 76 78 96 99 101 104
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2	69 74 76 78 96 99 101 104
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3	69 74 76 96 99 101 104 107
Table 3-3, Thermocouples specifications	69 74 76 96 99 101 104 107 110
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3 Table 5-4, Recorded results for temperatures in experiment-4 Table 5-5, Recorded results for temperatures in experiment-5	69 74 76 96 99 101 104 107 110
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3 Table 5-4, Recorded results for temperatures in experiment-4 Table 5-5, Recorded results for temperatures in experiment-5 Table 5-6, Recorded results for the calculated effectiveness in experiment-1 Table 5-7, Recorded results for effectiveness in experiment-2 Table 5-8, Recorded results for effectiveness in experiment-3	69 74 76 96 99 101 104 107 110 116 119 122
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3 Table 5-4, Recorded results for temperatures in experiment-4 Table 5-5, Recorded results for temperatures in experiment-5 Table 5-6, Recorded results for the calculated effectiveness in experiment-1 Table 5-7, Recorded results for effectiveness in experiment-2	69 74 76 96 99 101 104 107 110 116 119 122
Table 3-3, Thermocouples specifications Table 3-4, Digital anemometer specifications Table 3-5, Heat exchanger and heat pipe specifications Table 4-1, Summarizing the five experiments parameters Table 5-1, Recorded results for temperature in experiment-1 Table 5-2, Recorded results for temperatures in experiment-2 Table 5-3, Recorded results for temperatures in experiment-3 Table 5-4, Recorded results for temperatures in experiment-4 Table 5-5, Recorded results for temperatures in experiment-5 Table 5-6, Recorded results for the calculated effectiveness in experiment-1 Table 5-7, Recorded results for effectiveness in experiment-2 Table 5-8, Recorded results for effectiveness in experiment-3	69 74 76 96 99 101 104 107 110 116 119 122 125

Nomenclature

C: heat capacity rate, (W/K)

 c_p : Specific heat at constant pressure, $(kJ/kg^{\circ}C)$

m: Air mass flow rate, $(kg s^{-1})$

q: Heat transfer rate, (W)

T: Temperature, (${}^{\circ}C$)

 ΔT : Temperature change of air stream, (°C)

Dimensionless Numbers

Nu : Nusselt number, UD/K

Pr: Prandtl number, μCp/K

 $\it Re$: Reynolds number, $\rho vD/\mu$

Greek Symbols

ε: Heat pipe heat exchanger effectiveness

 μ : Dynamic viscosity Ns/m²

ρ: Density kg/m³

Subscript

C: Cold air

Cn: Condenser

E : Evaporator

H : Hot air

i: air inlet

o: air outlet

1. CHAPTER 1: INTRODUCTION

The environmental aspect now is one of the most important aspects that humanity shall give a special priority in its way to progress and prosperity. During the last decade; humanity was facing many problems, namely; limited reserves of fossil fuels, great increasing emissions of carbon dioxide, global warming and ozone depletion...etc. Those were the main environmental challenges for human beings.

Waste energy recovering techniques are considered one of the major tools that engineers use to reduce the harsh impact of civilization on the environment and also to reduce the cost of applying modern engineering solutions.

As a general definition, energy recovery system, is a technique used to reduce the energy consumed by a certain process through exchanging energies between sub systems of the overall system. Energy recovery systems have a wide range of application and methodologies, but in this thesis we will focus on the recovery systems used in air conditioning systems and specially those systems which exchange energy through heat pipe heat exchangers.

Many buildings owners and designers now are adopting the air to air energy recovery in air conditioning systems, due to the large energy consumption of the air conditioning system in buildings compared to the other systems, which is about 32% of the total energy consumed by building.

This economic point of view will lead also at the end for better environmental effect through reducing quantities of coal operated power stations, reducing NOx, CO2 and airborne particles, to enhance the air quality and contribute in slowing the climate change. Generally, adopting an energy recovery process is important to maintain an acceptable degree of the (IAQ) while conserving energy and reducing overall energy consumption.

There are wide diversity of system techniques developed for energy recovery in air conditioning systems in buildings [1], depending on certain factors like available space, type of energy recovered (latent or sensible), pressure drop, temperature range, cross contamination of air, cost (capital, pumping power and maintenance) and total effectiveness.

The right technique can be properly determined. Plate heat exchangers, rotary wheels, heat pipes heat exchangers, runaround loops, thermosiphons and twin tower enthalpy recovery loops are all techniques used in the air conditioning energy recovery.

1.1 Techniques for heat recovery inside building

In references [1] and [2], the design consideration of various energy recovery systems has been illustrated as follows: