

My Willy English Stills

On the de moderate of the still the still

صدق الله العظيم سوره البقره آيه (٣٢)

In-Vitro Study of the Sealing Ability of Mineral Trioxide Aggregate versus Portland Cement When Used as an Apical Plug

A thesis submitted to the Faculty of Oral and Dental Medicine,
Cairo University, in partial fulfillment of the requirements of the
Master Degree in Endodontics

By

Osama Asad Hasan Al-amoudi

B.D.S (2005)

(Misr University for Science & Technology)

Faculty of Oral and Dental Medicine
Cairo University

2009

SUPERVISORS

Prof. Dr. Mohamed M. Abdel Azim El-bayoumi

Professor of Endodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Suzan Abdul Wanees Amin Mohamed

Lecturer of Endodontics

Faculty of Oral and Dental Medicine

Cairo University

Acknowledgement

First and foremost, I am always indebted to "ALLAH" the most merciful.

I would like to express my gratitude and deep appreciation to *Prof. Dr. Mohamed Mohamed Abd El-Azim Elbayoumi*, Professor of Endodontics, Faculty of Oral and Dental Medicine, Cairo University for his considerable support, valuable supervision; it was a great honor to work under his supervision.

I wish to express my sincere gratitude and special thanks to *Dr. Suzan Abdul Wanees Amin Mohamed*, Lecturer in the Department of Endodontics, Faculty of Oral and Dental Medicine, Cairo University, for her great support, encouragement and endless patience, which can not be denied.

I wish to thank *Prof. Dr. Medhat Abd El-Rahman Kataia*, Professor and Chairman of endodontic department, Faculty of Oral and Dental Medicine, Cairo University, for his kindness and support.

Many thanks to all my professors, staff members in Endodontics Department for their support and concern, and special thanks go to all who helped me throughout this work.

Dedication

I dedicate this work to my dear father for his always encouraging and pushing me in the way of success.

To my lovely mother with her endless love and sacrifices.

To my brother and sisters.

List of Contents

		Page no
List of Contents		vi
List of Tables		vii
List of Figures		viii
Introduction		1
Review of Literature		
	Mineral Trioxide Aggregate	3
	■ Portland Cement	7
	 Clinical applications of Mineral Trioxide Aggregate 	9
	■ Immature teeth	12
	 Sealing ability of MTA and/or Portland Cement 	18
	 Methods of evaluation of the sealing ability of MTA 	A 33
The Aim of the Study		36
Materials and Methods		
	1) Teeth selection	37
	2) Preparation of the samples	37
	3) Preparation of the root canals	39
	4) Apical plug placement procedures	41
	5) Grouping of the samples	46
	6) Assessment of microleakage	48
	7) Statistical analysis	52
Results		53
Discussion		64
Summary and Conclusions		74
References		76
Anabia Cummany		

List of Tables

Table no.		Page no
Table (1):	Mean and standard deviation values of the optical density (OD) measurements of the eight experimental and the two	
	control groups	54
Table (2):	Effect of factors (Material, Thickness, Open apex size) on	57
	OD (<i>p</i> -values)	57

List of Figures

Figure no.		Page no
Figure (1):	Samples of teeth (A) before and (B) after the resection of 3mm of root tips	38
Figure (2):	An open apex model, starting with #2 Peeso reamer (A), followed by canal enlargement by K-files (B) then, retrograde instrumentation using K-files to produce a divergent open apex (C&D). Year radio graph showing prepared tooth (E)	40
F: (2)	apex (C&D), X-ray radiograph showing prepared tooth (E)	40
Figure (3):	Small-size open apex	40
Figure (4):	Large-size open apex	40
Figure (5):	Cotton pellet pushed down to the apex (A&B), and then removed with a barbed broach after the tooth is placed in saline-soaked floral foam (C)	42
Figure (6):	Apical plug placement instruments and materials: (A) ProRoot MTA, (B) ProRoot liquid micro-dose ampoule, (C) white Portland cement, (D) sterile glass slab, (E) endodontic pluggers, (F) mixing spatula and (G) MTA gun.	42
Figure (7):	Radiograph showing prepared teeth filled with 3mm-and 5mm-thickness MTA apical plugs	44
Figure (8):	Radiograph showing prepared teeth filled with PC apical plugs in which gutta-percha cones were placed inside canals to show the thickness of the apical plugs (3mm and 5mm)	44
Figure (9):	Photograph showing samples of teeth placed in saline-soaked floral foam after placement of the apical plugs	45
Figure (10):	An illustration showing the grouping of the teeth in the experimental group	47

Figure (11):	Tooth coated with clear nail varnish (A), then root tip dipped in 2% buffered methylene blue (B)
Figure (12):	Experimental teeth stored in glass vials containing 1000µl of concentrated (65 wt %) nitric acid each (day 1)
Figure (13):	Glass vial after teeth dissolution in the nitric acid (day 3).
Figure (14):	The glass vial content centrifuged at 14,000 rpm for 5 min
Figure (15):	One hundred microliters of the supernatant were taken from each eppendorf tube using micropipette and transferred to a 96-well plate
Figure (16):	Microplate spectrophotometer
Figure (17):	Photograph showing samples with different optical densities (OD): (A) OD equal (0.032), (B) OD equal (0.021) and (C) OD equal (0.85)
Figure (18):	Bar chart showing the mean OD for experimental and control groups.
Figure (19):	Bar chart showing the mean OD for the two materials (MTA and PC) regardless of <i>Thickness</i> and <i>Open apex size</i>
Figure (20):	Bar chart showing the mean OD for the two thicknesses (3 mm and 5 mm) regardless of <i>Materials</i> and <i>Open apex size</i>
Figure (21):	Bar chart showing the mean OD for the two open apex size (large and small) regardless of <i>Materials</i> and <i>Thickness</i>
Figure (22):	SEM micrograph of a representative sample from (MTA 3 L) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between MTA and dentin (Magnification ×800)

Figure (23):	SEM micrograph of a representative sample from (MTA 3 S) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between MTA and dentin (Magnification ×800)	60
Figure (24):	SEM micrograph of a representative sample from (MTA 5 L) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between MTA and dentin (Magnification ×800)	61
Figure (25):	SEM micrograph of a representative sample from (MTA 5 S) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between MTA and dentin (Magnification ×800)	61
Figure (26):	SEM micrograph of a representative sample from (PC 3 L) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between PC and dentin (Magnification ×800)	62
Figure (27):	SEM micrograph of a representative sample from (PC 3 S) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between PC and dentin (Magnification ×800)	62
Figure (28):	SEM micrograph of a representative sample from (PC 5 L) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between PC and dentin (Magnification ×800)	63
Figure (29):	SEM micrograph of a representative sample from (PC 5 S) group showing (A) an overview of the apex (Magnification ×70), and (B) a gap between PC and dentin (Magnification ×800)	63

Introduction

Introduction

The main challenge in performing root canal treatment in teeth with wideopen apices is to obtain an optimal apical seal. The wide foramen requires a large volume of filling material that may extrude from the root canal into the periapical tissues creating foreign body responses and compromising the apical seal.

Apexification is defined as a method to induce a calcified barrier in a root with an open apex or the continued apical development of an incomplete root in teeth with necrotic pulp. Several procedures utilizing different materials have been recommended to induce root-end barrier formation. Apexification with calcium hydroxide is the most commonly advocated therapy for immature teeth with non vital pulp and the healing rate is high. However, a number of disadvantages are apparent e.g. the length of the treatment, the risk of fracturing the root during and after the apexification treatment and the fragility and porosity of the calcified apical barrier, resulting in possible apical extrusion of gutta-percha during treatment.

An alternative for calcium hydroxide apexification is a single-step technique using an artificial apical barrier; the one-visit apexification has been described as the non-surgical compaction of a biocompatible material into the apical end of the root canal, thus, creating an apical stop and enabling immediate filling of the root canal.

Mineral trioxide aggregate (MTA) has been suggested for one-visit apexification. It has been described as a good alternative to the Ca (OH) 2 apexification procedure due to its favorable properties such as biocompatibility, good canal sealing ability and the ability to promote periradicular tissue regeneration; when MTA is applied as an apical plug, favored apexification and periapical healing noticed.

However, the high cost of MTA has urged researcher to find cheaper substitutes. Portland cement has been found by several authors to have similar properties to MTA e.g. biocompatibility and sealing ability, which could make it a less expensive alternative to MTA in different clinical applications e.g. one-visit apexification. Thus the purpose of the present study was to compare the sealing ability of Mineral Trioxide Aggregate (MTA) and Portland cement when used as an apical plug in an artificial model of immature teeth.

Review of Literature

Review of Literature

Mineral Trioxide Aggregate

Mineral Trioxide Aggregate (MTA) was introduced to endodontics by Torabinejad et al in. 1993 to address shortcomings of routinely-used root-end filling materials. The principle components in MTA cement are tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide (Abedi et al. 1995). MTA is a powder consisting of hydrophilic particles that set in the presence of moisture (Torbinejad et al. 1995a). Hydration of the powder results in a colloidal gel that solidifies to a hard structure. Characteristics of set MTA depend on the size of the particles, the water to powder ratio, temperature and humidity at the application site and the amount of air trapped in the mixture (Torbinejad et al. 1993).

Mineral Trioxide Aggregate was first marketed as ProRoot MTA by Dentsply Tulsa Dental (Tulsa, OK). The Brazilian company, Angelus Dental Solutions (Odonto-Logika, Ind. Prod. Odont. Ltda, Londrina, Parana, Brazil) selected a Portland cement and added bismuth oxide to provide radiopacity similar to that of ProRoot MTA. This product is commercially available as MTA-Angelus (**Duarte et al. 2003**).

Several studies of MTA have demonstrated that the material possesses many ideal Properties. The sealing ability of MTA in root-end fillings was found to be superior to that of amalgam, IRM and Super-EBA using both dye (Torbinejad et al. 1994) and bacterial (Torbinejad et al. 1995a) leakage methods. When MTA was used as a root-end filling material in monkeys, results revealed no periradicular inflammation, new bone formation and the growth of cementum directly against the MTA material (Torbinejad et al. 1997).