

Human Comfort Study of Medium Rise Reinforced Concrete Buildings under Wind Excitations

By

Sharehan Harby Ali El Sherif

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Human Comfort Study of Medium Rise Reinforced Concrete Buildings under Wind Excitations

By Sharehan Harby Ali El Sherif

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Sherif Ahmed Mourad	Prof. Dr. Hatem Mostafa Mohame								
Professor of Steel Bridges and Buildings Faculty of Engineering, Cairo University	Professor of Reinforced Concrete Structure Faculty of Engineering, Cairo University								
Dr. Maha Moddather Hassan									
Assistan	t Professor								

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Structural Engineering Department Faculty of Engineering, Cairo University

Human Comfort Study of Medium Rise Reinforced Concrete Buildings under Wind Excitations

By Sharehan Harby Ali El Sherif

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Ayman Hussein Hussny

Prof. Dr. Adel Galal El Attar

Prof. Dr. Sherif Ahmed Mourad

Prof. Dr. Hatem Mostafa Mohamed

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Date of Birth:

Nationality:

E-mail: Phone:

Address:

Registration Date:

Awarding Date:

Degree:

Department: Structur

Master of Science

Structural Engineering

by Ali El sherif

Shahin St.Haram

tmail.com

Supervisors:

Prof. Dr. Sherif A.Mourad Prof. Dr. Hatem Mostafa Dr. Maha Moddather Hassan

Examiners:

Prof. Dr. Ayman Hussein Hussny (External examiner)
Prof. Dr. Adel Galal El Attar (Internal examiner)
Prof. Dr. Sherif Ahmed Mourad (Thesis main advisor)

Prof. Dr. Hatem Mostafa Mohamed (Member)

Title of Thesis:

Human Comfort Study of Medium Rise Reinforced Concrete Buildings under Wind Excitations

Key Words:

Human comfort; reinforced concrete building; wind load; wind induced vibration

Summary:

Wind induced motion in buildings may result in excessive vibrations that hinder the usage of them. Traditionally, wind loads are represented as static forces acting on the building with increased magnitudes relative to its height. Consideration of human comfort limits is not a common practice for regular designers. A parametric study is conducted to investigate the effect of different parameters on the human comfort limits of medium rise buildings. The parameters include the used structural system, number of floors, and floor height. Total of 92 models are examined using linear static and dynamic analyses to determine the acceleration and drift values under wind loading. Static analysis as well as dynamic (time history) analyses are employed in the performed parametric study.

Acknowledgments

The author is honored to obtain her M.Sc. degree under the supervision of eminent and distinguished supervisors. She is deeply indebted to Prof. Dr.Sherif A.Mourad for his guidance, support, encouragement, and valuable discussions. She is also grateful to Prof. Dr. Hatem Mostafa and Dr. Maha Moddather for their guidance, discussion, and review during the course of this work, and great efforts to accomplish the thesis objectives.

My deepest gratitude and appreciation are also due to my family for their support and encouragement when it was most needed.

Table of Contents

ACKNO	WLEDGMENTS	5
TABLE (OF CONTENTS	6
LIST OF	TABLES	8
LIST OF	FIGURES	9
ABSTRA	ACT	XII
СНАРТЕ	ER 1 : INTRODUCTION	1
1.1.	INTRODUCTION	1
1.2.	PROBLEM STATMENT	
1.3.	SCOPE OF THE RESEARCH	
1.4.	ORGANIZATION OF THE THESIS	2
СНАРТЕ	ER 2 : LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	DYNAMIC NATURE OF WIND LOADING	3
2.3.	INFLUENCE OF HUMAN COMFORT	3
2.4.	EXPERMENTAL STUDIES	4
2.5.	NUMERICAL STUDIES	4
2.6.	IMPORTANCE OF UNDERSTANDING WIND LOADING	5
2.7.	RECOMMENDATIONS IN DESIGN CODES	5
2.7.1		
2.7.2	Measures Of Human Comfort	11
СНАРТЕ	ER 3 : METODOLOGY	15
3.1.	Introduction	15
3.2.	Modeling Procedure	
3.3.	DESCRIPTION OF THE MODELS	16
3.3.1	. Geometry	16
3.3.2	. Material	17
3.3.3	. Design of the models	18
3.3.4		
	.4.A. Static Loads	
3.3.5	•	
3.3.6		
3.3.7		
3.4.	PROGRAMS USED	23
3.4.1	. Etabs 9 Program	23
3.4.2	SAP2000 Program	23

CHAPTER	4 : RESULTS	25
4.1.	STATIC ANALYSIS RESULTS	25
4.1.1.	Effect of statical system	25
4.1.1.		
4.1.1.		
4.1.1.	3. Number of floors (25 floors)	36
4.1.2.	Effect of Number of floors	41
4.1.2.	1. Flat slab without drop system	41
4.1.2.	2. Flat slab with drop system	46
4.1.2.	3. Solid slab system	51
4.1.3.	Drift results	56
4.1.3.	1. Number of floors (15 floors)	56
4.1.3.	2. Number of floors (20 floors)	57
4.1.3.	3. Number of floors (25 floors)	58
4.2.	COMPARISON BETWEEN STATIC AND DYNAMIC ANALYSES	59
4.2.1	. Dynamic vs. Static Analyses	59
CHAPTER	5: CONCLUSIONS AND RECOMMENDATIONS	68
5.1.	SUMMARY	68
5.2.	CONCLUSIONS	
5.3.	FUTURE RESEARCH WORK	
REFEREN	CES	70

List of Tables

Table 2.	I: Ex	plain of curv	es in	Figure 2.1	l (Henrietta	a V.C. F	lowarth-	Michael J.
Griffin)	8							
Table 2.2	:Appl	ication of the	limit o	curves in B	S 6611 and	l ISO 68	397 for	horizontal
motion ev	vents	of more than	10 m	inutes dura	tion (see F	igure 2.	1) (Hen	rietta V.C.
Howarth-M					`	C	, ,	J.
Griffin)								8
		Levels						
(1967)				9	-	-	•	
` /		ception thresh			om motion	simulat	tor tests	and full-
		studies						
						,		<i>3</i> ,
Table				3.1 :				Studied
parameter	S					19		
		Notation						Static
-		Notation		Studied	Models	for	the	Dynamic
		22						
Table		4.1 :			Dynamic			models
					•			1110 00010
1		ifference bety				displace	ment r	nercentage
I doit Ti	_ . D		,, 5011	static and	aynanne	arspiace	inche	,cicciiuge
6	7							

List of Figures

6897(Heni	.1: limit curv	V.C.		Howartl	n-Michae		and ISO J.
Figure	2.2 : T	olerance				by	Chang
	2.3: Perception		RMS	acceleratio	n by I	Lawrence	G. Griffis
` /	2.4 : Perception	threshold -	- Peak	acceleration	n by I	Lawrence	G. Griffis
Figure	3.1:			ations	of	the	model
Figure	3.2:	Locat	ion	of 17	1	the	shear
Figure	3.3:	Time		history		for	wind
Figure 4.	1: Acceleration number	vs. the statical	al system	for buildin			-
t _{wall} =20cm	n			28			ight of 5m
	number				15	floors	for
Figure 4. and	3: Acceleration number	vs. the statical of flo	al system ors	of of			
Figure 4.4	4: Acceleration number	vs. the statical of flo	al system ors	of for building	_		•
Figure 4.	5: Acceleration of	vs. the statical floors	al system of	n for buildir	-		-
Figure 4.	6 : Acceleration of	vs. the statical floors	al system of		_		ight of 5m internal
Figure 4. and	7: Acceleration number of	vs. the statical floors	al system of		gs with loors	floor hei	ight of 3m external
and r	8: Acceleration of	floors	of		igs with loors	floor hei	ight of 5m external

Figure	4.9 : Acceler	ation vs.				buildings with	floor heig	ght of 3m
and	number	of	floor	S	of	15	floors	for
	cm							
_				•		buildings with	-	
and			floor			15	floors	for
	cm							
						buildings with	-	ght of 3m
and	number	of	floor	S	of	15	floors	for
	cm							
Figure				•		buildings with	•	ght of 5m
and			floor			15	floors	for
	cm							
_				-		buildings with	_	
					15	floors	for	internal
_				•		buildings with	-	
and			floors		15	floors	for	internal
walls			35		_			
_				-		buildings with	_	
and			floors		15	floors	for	external
					_			
_				•		buildings with	-	
and	number			of	15	floors	for	external
_				•		buildings with	-	
and		of				25	floors	for
	cm					1 11 11 1.1	C1 1 .	1 . 6.5
						buildings with		
and			floor		of	25	floors	for
	cm					1 21 12 2.1	CI 1 .	1. 60
						buildings with		
	number	of	floor			25	floors	for
	cm					1 '11' '41	CI 1 '	1. 65
_				•		buildings with	-	
and	number	of	floor		of	25	floors	for
	cm					huildings with	floorboid	sht of 2m
_				•		buildings with	-	
and	number	of	floors		25	floors	for	internal
					for	huildings with	floorboid	sht of 2m
_				•		buildings with	-	
and	number	of	110013	OI	25	floors	for	internal
					for	huildings with	floorboid	sht of 2m
_				•		buildings with	-	
and	number		floors		25	floors	for	external
					for	huildinga with	floor boi	tht of 5m
_		of				buildings with	-	
and	number		110015		25	floors	for	external
W/AIII			.40	1				

Figure	4.25 : Ac	celeration	vs. th	e number	of floors	for	buildings	with floor	height of
3m	and	flat	S	lab	without		drop	system	for
$t_{\text{wall}}=20$	cm				44				
Figure	4.26 : Ac	celeration	vs. th	e number	of floors	for	buildings	with floor	height of
5m	and	flat	S	lab	without		drop	system	for
$t_{\text{wall}} = 20$							•	•	
						for	buildings	with floor	height of
_							-	system	-
							1	,	
						for	buildings	with floor	height of
_							_	system	_
							I	J	
							buildings	with floor	height of
_							_	for	_
					c Gro	٢	System	101	1111011101
					of floors	for	buildings	with floor	height of
5m		flat sl					_	for	_
						P	system	101	micriai
						for	huildinge	with floor	height of
3m							_	for	_
		si			ւ աշր	,	system	101	CAUTHAI
					of floors	for	buildings	with floor	hoight of
_									
5m					ւ այ)	system	for	externar
						C	1 '1 1'	:41- £1	1! - 1.4 - 6
T	1 22. A.				af flaama				
_		celeration					_		_
3m	and	flat		slab	with		_	system	_
3m t _{wall} =20	and cm	flat		slab	with 4	.9	drop	system	for
3m t _{wall} =20 Figure	and cm 4.34 : Ac	flat celeration	vs. th	slab e number	with 4 of floors	.9 for	drop buildings	system with floor	for height of
3m t _{wall} =20 Figure 5m	and cm 4.34 : Ac and	flat celeration flat	vs. th	slab e number slab	with 4 of floors with	.9 for	drop buildings	system	for height of
$3m \\ t_{wall} = 20 \\ \textbf{Figure} \\ 5m \\ t_{wall} = 20 \\$	and cm 4.34 : Ac and cm	flat celeration flat	vs. th	slab e number slab	with4 of floors with4	.9 for .9	drop buildings drop	system with floor system	for height of for
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure	and cm 4.34 : Ac and cm 4.35 : Ac	flat celeration flat celeration	vs. th vs. th	slabe number slabe	with4 of floors with4 of floors	.9 for .9 for	drop buildings drop buildings	system with floor system with floor	for height of height of
$3m \\ t_{wall} = 20 \\ \textbf{Figure} \\ 5m \\ t_{wall} = 20 \\ \textbf{Figure} \\ 3m$	and cm 4.34 : Ac and cm 4.35 : Ac and	flat celeration flat celeration flat	vs. th	slabe number slabe number	with	.9 for .9 for	drop buildings drop buildings drop	with floor system with floor system	for height of height of
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30	and cm 4.34: Ac and cm 4.35: Ac and cm	flat celeration flat celeration flat	vs. th	slab e number slab e number slab slab	with	.9 for .9 for	drop buildings drop buildings drop	system with floor system with floor system	for height of for height of for
$3m$ $t_{wall}=20$ Figure $5m$ $t_{wall}=20$ Figure $3m$ $t_{wall}=30$ Figure	and cm 4.34: Ac and cm 4.35: Ac and cm 4.36: Ac	celeration flat celeration flat celeration	vs. th	slabe number slabe number slabe	with	.9 for .9 for	drop buildings drop buildings drop buildings	with floor system with floor system with floor	for height of for height of height of
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30 Figure 5m	and cm	celeration flat celeration flat celeration flat	vs. th	slabe number slabe number slabe number	with	.9 for .9 for .9	drop buildings drop buildings drop	with floor system with floor system with floor	for height of for height of height of
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30 Figure 5m t _{wall} =30	and cm	celeration flat celeration flat celeration flat celeration flat	vs. th	e number slab e number slab e number slab e number slab	with	for 9 for 9 for 9	drop buildings drop buildings drop buildings drop	with floor system with floor system with floor system	for height of for height of for height of
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30 Figure 5m t _{wall} =30 Figure	and cm	celeration flat celeration flat celeration flat celeration	vs. th vs. th vs. th	e number slab	with	for 9 for 9 for 9 for	drop buildings drop buildings drop buildings drop buildings	with floor system with floor system with floor system with floor	for height of for height of for height of
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 3m	and cm	celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th	slabe number slabe number slabe number slabe number with	with	for 9 for 9 for 9 for	drop buildings drop buildings drop buildings drop buildings	with floor system with floor system with floor system	for height of for height of for height of
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30 Figure 5m t _{wall} =30 Figure 3m walls	and cm	celeration flat celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th	slabe number slabe number slabe number slabe number slabe number slab	with	for 9 for 9 for 9 for	drop buildings drop buildings drop buildings drop buildings system	with floor system with floor system with floor system with floor system with floor	for height of for height of for height of for height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 3m walls	and cm	celeration flat celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th slab	e number slab e number slab e number slab e number slab e number with	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system buildings	with floor system with floor system with floor system with floor for with floor	for height of for height of for height of internal
3m t _{wall} =20 Figure 5m t _{wall} =20 Figure 3m t _{wall} =30 Figure 5m t _{wall} =30 Figure 3m walls	and cm	celeration flat celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th	e number slab e number slab e number slab e number slab e number with	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system	with floor system with floor system with floor system with floor for with floor	for height of for height of for height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 3m walls Figure 5m walls	and cm	celeration flat celeration flat celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th slab vs. th slab	e number slab e number slab e number slab e number slab e number with e number	with	for for for for	drop buildings drop buildings drop buildings drop buildings system buildings system	with floor system with floor system with floor system with floor for with floor	for height of for height of for height of internal height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 3m walls Figure 5m walls	and cm	celeration flat celeration flat celeration flat celeration flat celeration flat celeration flat	vs. th vs. th vs. th vs. th slab vs. th slab	e number slab e number slab e number slab e number slab e number with e number	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system buildings system buildings	with floor system with floor system with floor system with floor for with floor	for height of for height of for height of internal height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 3m walls Figure 5m walls	and cm	celeration flat	vs. th vs. th vs. th slab vs. th slab vs. th	e number slab e number slab e number slab e number slab e number with e number	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system buildings system buildings	with floor system with floor system with floor system with floor for with floor	height of for height of for height of internal height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 3m twall=30 Figure 3m walls Figure 5m walls Figure 3m	and cm	celeration flat	vs. th vs. th vs. th vs. th slab vs. th slab vs. th	e number slab e number slab e number slab e number slab e number with e number with	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system buildings system buildings	with floor system with floor system with floor system with floor for with floor for with floor	height of for height of for height of internal height of internal
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 5m walls Figure 5m walls Figure 3m	and cm	celeration flat	vs. th vs. th vs. th slab vs. th slab vs. th	e number slab e number slab e number slab e number with e number with e number with	with	for 69 for 69 for for for	drop buildings drop buildings drop buildings drop buildings system buildings system buildings system	with floor system with floor system with floor system with floor for with floor for with floor	for height of for height of for height of for height of internal height of external
3m twall=20 Figure 5m twall=20 Figure 3m twall=30 Figure 5m twall=30 Figure 5m walls Figure 5m walls Figure 3m	and cm	celeration flat celeration flat	vs. th vs. th vs. th vs. th slab vs. th slab vs. th	e number slab e number slab e number slab e number with e number with e number with	with	for 9 for 9 for for for	drop buildings drop buildings drop buildings drop buildings system buildings system buildings system buildings	with floor system with floor system with floor system with floor for with floor for with floor for with floor for	for height of for height of for height of for height of internal height of external height of

_		Acce				number d					_		floor	height of for
t _{wall} =20	cm	anu			5011	·u		Siau	,	54		ystem	L	101
Figure	4.42 :	Acce	leration	vs.	the	number	of	floors	for	buildi	ngs	with	floor	height of
_		and				d					_	ystem		for
twall=20	cm													
												with	floor	height of
3m		and				d						ystem	1	for
t _{wall} =30	cm									54	-		CI.	
_											_			height of
5m t _{wall} =30e						d						ystem	1	for
												with	floor	height of
3m						slab					_			_
walls									•			101		11110111111
										buildi	ngs	with	floor	height of
5m	a	ınd	SC	olid		slab)	S	yste	em		for		internal
walls														
_											_			height of
3m										m		for		external
walls										1 !1 .1!		:41-	C1	1 1. 4 C
_											_			height of
walls										111		101		external
										mod	els		havino	g 15
floor								101		11100	C1 5	-	114 11118	5 15
Figure								for		mod	els]	having	g 20
floor														
Figure								for		mod	els]	having	g 25
floor								_		_				
Figure			tatic	VS.	Dy	namic	di	splace	mer	it fo	r	mode	el 20	FSIN203
			Stati	C	VS	D	vna	mic	di	isplace	me	nt	for	model
20FSX						. 2	<i>J</i> 114	11110	.	Брисс			101	1110401
Figure	4	.54 :	Stati	c	VS	. D	yna	mic	di	isplace	eme	nt	for	model
20FSDI	N203	3		61										
Figure		. 55:			VS	. D	yna	mic	di	isplace	eme	nt	for	model
20FSD2						-			•				C	
Figure		.5 6:			VS	. D	yna	mic	dı	isplace	eme	nt	for	model
20FSD2 Figure		5 1 .57 :	Stati			D	vn o	mio	4	ia nl aga	ma	nt	for	model
20SDIN					VS	. D	yma	mic	u)	isplace	ille.	IIL	101	moder
Figure		.58 :			VS	D	vna	mic	di	isplace	eme	nf	for	model
20SDX							<i>J</i> 1100			БРТ			101	1110 0001
Figure		.59 :	Stati		VS	. D	yna	mic	di	isplace	eme	nt	for	model
20SDIN	1205.			63	3					=				
Figure		.60 :			VS	. D	yna	mic	di	isplace	eme	nt	for	model
30FSD2						_							c	
Figure 25FSD2		.61 :	Stati	c 64	VS	. D	yna	mic	di	isplace	eme	nt	for	model
7.1E3L	A I /!!	4		04										

Figure	4.62 :	Static	VS.	Dynamic	displace	ment	for	model	
30SDIN	203.3	6	5						
Figure	4.63 :	Static vs.	Dyna	mic displace	ement for	model	25SI	DIN204	
	65	5							
Figure 4	4.64 : : Co	omparison b	etween o	dynamic of ex	ternal vs. in	ternal sh	ear wal	1 for 20	
story bu	ilding wi	ith flat slab	and 3m	floor height a	nd 20mm sl	near wall	(20F)	SIN203	
vs.	20FSXT203)				dynamic				
				66					
Figure 4	4.65 : Co	mparison be	tween d	ynamic of ext	ernal vs. in	ternal she	ear wal	1 for 20	
story bu	ilding w	ith flat slab	with d	rop and 3m f	loor height	and 20n	nm she	ar wall	
(20FSD	IN203		VS.	20F	SDXT203)		d	lynamic	
displace	ment			66				-	

Abstract

Design of tall and medium rise buildings is usually governed by wind loads rather than seismic loads. Generally, designers would consider the influence of wind loads represented as static loads on the resulting straining actions and drift values. Traditional representation of wind excitation may not capture the influence on the human comfort limits which are affected by many factors including the dynamic properties of the building, usage of areas, expected wind excitations...etc.

In this research, a parametric study is conducted to investigate the influence of a number of parameters including the used structural system, number of floors, and floor height on the performance of medium rise reinforced concrete buildings under wind loading effects. Total of 92 models are examined using linear static and dynamic analyses. Human comfort limits are usually related to the acceleration values of buildings. Hence, in the current study, focus is given to acceleration and drift values as measures of the human comfort levels in the range of the studied structures. Static and dynamic time history analyses are employed in the performed parametric study.

In addition, limits and recommendations imposed by different codes and standards to satisfy human comfort requirements are explored and listed.

Chapter 1: Introduction

1.1. Introduction

Civil structures are traditionally designed to resist static loads. They are, however, subjected to a variety of dynamic loads, including wind and earthquakes. Neglecting the dynamic nature of such loads may cause severe vibratory motion which hinders the usage of the structure.

1.2. Problem Statement

Wind loads have traditionally been modeled using static force equivalents. The procedure for applying wind loads includes determining basic wind speed value which corresponds to an extreme velocity measured at a height of 10 m and averaged over a period of 3 seconds and has a return period of 50 years. Afterwards, the basic wind speed is adjusted to account for topology, ground roughness, structure shape, and height above ground. Hence, the resulting wind speed is converted into static pressure acting upon the surface area of the structure.

However, in some cases, it is not deemed sufficient to treat wind loads as static forces. The dynamic response of structures to wind loads can be assessed analytically or experimentally. In addition, vibration effects in medium rise and high rise buildings may result in discomfort conditions for occupants.

Design codes and standards provide guidelines for the acceptable acceleration ranges for different structures. Such guidelines are usually related to the acceptable range of acceleration. Meanwhile, most common design applications focus on the strength of the building and its ability to resist the applied loads with no consideration to the dynamic nature of wind excitations.

A parametric study is carried out for the evaluation of resulting acceleration values for a wide range of medium rise reinforced concrete structures. This work focuses mainly on conventional reinforced concrete buildings for office occupancy.

1.3. Scope of the Research

The need to assess the limits of human comfort adopted in different codes and whether conventional design of reinforced concrete buildings satisfies such limits is the main point of this research work. The research program includes:

- 1. Investigating acceleration values for medium rise reinforced concrete buildings considering different systems.
- 2. Comparing response of medium rise reinforced concrete buildings under static and dynamic representation of wind loads.
- 3. Exploring the human comfort limits and recommendations stipulated in different codes and standards.