

The Effect Of Partial Splenic Artery Embolization In The Control Of Hypersplenism

Thesis

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Mohamed Haroun Hassan Ibrahim

M.B.B.C.H. Ain Shams University

Supervised by Prof. Dr. Sherif Abougamrah

Professor of Radiodiagnosis, Faculty of Medicine
Ain Shams University

Dr. Ahmed Samy Abdelrahman Abdelazem

Lecturer of Radiodiagnosis, Faculty of Medicine Ain Shams University

> Faculty of medicine Ain Shams university 2016

دور الانسداد الجزئي الشرياني في السيطرة على فرط نشاط الطحال

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية مقدمة من

طبیب / محمد هارون حسن ابراهیم بکالیریوس الطب - جامعة عین شمس

تحت إشراف

أ.د/ شريف ابو جمرة أستاذ الاشعة التشخصية كلية الطب- جامعة عين شمس

د/ احمد سامى عبد الرحمن عبد العظيم مدرس الاشعة التشخصية كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس 2016

وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلُوا فَسَيَرَى اللَّهُ عَمَلُكُمْ وَرَسُولُهُ وَالْمُؤْمِنُوزِ

سورة التوبة رقم الأية ١٠٥

First and foremost, praise is to **Allah**, to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. **Sherif Abougamrah**, for his sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special thanks, gratitude and appreciation to Dr. **Ahmed Samy**, for his close supervision, continuous advice and support which gave me the best guidance during different stages of this work.

I would like to thank Dr. **Karem Abdeltawab** and Dr. **Mohamed Gamal** for giving me the opportunity to work with them and support me in different cases in this work.

Finally, I cannot forget to thank my professors, my family, and my colleagues, for their support and moral encouragement.

Mohamed Haroun

CONTENTS

- 1. Introduction and aim of the work.
- 2. Review of literature.
- Histological & Anatomical aspects of spleen.
- Pathogenesis of hypersplenism
- Diagnosis and treatment of hypersplenism
- Indications, technical considerations and complications of splenic arterial interventions
- 3. Patients and methods.
- 4. Results and Illustrative cases.
- 5. Discussion.
- 6. Summary and conclusion.
- 7. References.
- 8. Arabic summary

LIST OF ABBREVIATION

SAE..... Splenic arterial embolization

PSE..... Partial splenic arterial embolization

HCV.....Hepatitis C Virus

US......Ultrasound

CT.....Computed Tomography

MRI......Magnetic Resonance Imaging

LIST OF FIGURES

Figure (1): The normal spleen with its vessels at the hilum	
(Imaging Atlas of Human Anatomy 2013)	6
Figure (2): Splenic artery anatomy (Madoff et al., 011)	8
Figure (3): Termination of an arteriole (Sinadel et al., 2015)	9
Figure (4): The perfusion within the spleenisdemonstrated	
(Imaging Atlas of Human Anatomy 2013)	10
Figure (5): Coronal CT of the abdomen with IV contrast	
reveals a massively enlarged spleen. (Applied radiological	
anatomy 2010)	21
Figure (6): The normal ultrasound features of liver and spleen	
(Imaging Atlas of Human Anatomy 2013)	29
Figure (7): Contrast-enhanced CT scan shows active	
extravasation with splenic arteriogram obtained before and	
after interventionshows multiple pseudoaneurysms.	
(Madoff et al., 2011)	31
Figure (8) Splenic arteriogram shows an enlarged splenic	
arterial trunkwith a superior branch that originates at the	
approximate midpoint of the artery.(Madoff et al., 2011)	32
Figure (9): Change in color that represents absence of	
perfusion in the inferior portion of the spleen (Madoff et al.,	
2011)	36
Figure (10): Arteriograms obtained before embolization show	
normal splenic anatomy and the superior segment of the splenic	
artery (Alban Denyset 1.,2014)	37
Figure (11): Drawing of nonselective partial SAE shows	
patchy changes in perfusion throughout splenic parenchyma	
(Madoff et al., 2011).	38
Figure (12): Transverse CT scan of the abdomen	
shows splenomegaly before and after embolization.	
(Madoff et al., 2011)	39

Figure (13): Shows PVA Embolization particles (EURORAD -	
Radiologic Teaching Files)	45
Figure (14): Shows gelatin sponge hand cut bledges	
(EURORAD - Radiologic Teaching Files)	47
Figure (15): Shows coil embolization of the splenic arterial	
branch (EURORAD - Radiologic Teaching Files)	48
Figure (16): Transverse CT scan of the abdomen	
shows splenic abscess after splenic arterial embolization.	
(Madoff et al., 2011)	53
Figures (17& 18): Pre embolization angiogram	
reveal tortuous splenic artery with normal splenicblush	
(ElDemerdash interventional radiologyunit)	63
Figures (19&20): Pre embolization angiogram	
reveals normal splenic blush(ElDemerdash interventional	
radiology unit)	66
Figures (*1& *2): Pre embolization angiogram	
reveal normal splenic blush (ElDemerdash interventional	
radiology unit)	69
Figures (73& 74): Pre embolization angiogram reveals	
normal splenic blush(ElDemerdash interventional radiology	
unit)	72
Figures (75& 76): Pre embolization angiogram with normal	
splenic blush(ElDemerdash interventional radiology	
unit)	74
Figure (77): Transverse CT scan shows a large fluid collection	
(arrows), Splenic abscess after splenic arterial embolization	80

INTRODUCTION

INTRODUCTION

ypersplenism is a pathological condition characterized by increased pooling or destruction of the blood corpuscular elements by the spleen, which is often managed by surgical removal or trans-catheter ablation of the spleen. (**Peck-Radosavljevic, 2001**).

Many disorders may lead to hypersplenism, including cirrhosis with portal hypertension, hematologic abnormalities such as idiopathic thrombocytopenic purpura, thalassemia major, and hereditary spherocytosis; and diffuse splenic infiltration from primary malignancies such as leukemia and lymphoma (**Athale et al., 2000**).

Symptoms of hypersplenism may include abdominal discomfort, pain and respiratory distress, while signs include splenomegaly, thrombocytopenia, leukopenia and anemia (**Dwivedi et al., 2002**).

An effective treatment for hypersplenism may be total splenectomy however; it impairs the ability of the body to produce antibodies against encapsulated microorganisms and predisposes patients to sepsis.

INTRODUCTION 2

After splenectomy, a second surgical operation or additional transfusion may be required as the condition that is treated with this surgery may recur (Madoff et al., 2005).

The use of splenic artery embolization is used for the intentional infarction of splenic tissues to reduce their consumptive activity. In 1973, Maddison reported the initial clinical trial with splenic arterial embolization, but severe complications of complete splenic infarction including splenic abscesses formation and other grave complications, such as splenic rupture, septicemia and pneumonia, have prevented its acceptance as a viable treatment option. Since then, many authors advocated incomplete or partial splenic arterial embolization (PSE), in which a portion of the parenchyma of the spleen is left viable to preserve its immunological function (Madoff et al., 2005).

Partial splenic arterial embolization, if adequatly performed, is a safe and useful alternative to splenectomy with improvement in anemia, leukopenia and thrombocytopenia (**Hong et al., 2014**).

INTRODUCTION 3

AIM OF THE WORK:

The aim of the present work is to investigate the effect of partial splenic artery embolization in the control of hypersplenism.

ANATOMY OF THE SPLEEN

pleen is the largest organ derived from mesenchyme and lies in the mesentery. It consists of masses of lymphoid tissue located around fine terminal branches of veins and arteries. These vessels are connected by modified capillaries called splenic sinuses (Brehdolan et al., 2010).

The spleen is located just below the diaphragm in the left upper abdomen behind the stomach. It measures normally about $125 \times 75 \times 50$ mm ($5 \times 3 \times 2$ inches) in size, with an average weight of 150 grams (**Brehdolan et al., 2010**).

Development:

The spleen appears about the fifth week as a localized thickening of the mesoderm in the dorsal mesogastrium above the pancreatic tail. Then it is carried to the left with the change in position of the stomach, where it lies behind the stomach and in contact with the left kidney. The part of the dorsal mesogastrium between the spleen and the greater curvature of the stomach forms the gastrosplenic ligament (**Brehdolan et al., 2010**).

Relations:

The diaphragmatic surface is convex, smooth, and is directed upward, backward, and to the left. It is related to the under surface of the diaphragm, the ninth, tenth, and eleventh ribs of the left side, and the intervening lower border of the left lung and pleura (Gray's, 2010).

The visceral surface is divided by a ridge into an anterior or gastric and a posterior or renal portion.

The gastric surface is in contact with the posterior wall of the stomach and the tail of the pancreas. The hilum is present at its medial border. (Gray's, 2010).

The renal surface is directed downwards and medially. It is related to the upper part of the anterior surface of the left kidney and occasionally with the left suprarenal gland (Gray's, 2010).

Figure (1): Shows the normal spleen with its vessels at the hilum (Imaging Atlas of Human Anatomy 2013).

The anterior border is free, sharp, thin, and is often notched; it separates the diaphragmatic from the gastric surface. The posterior border , more rounded and blunt, separates the renal from the diaphragmatic surface; it corresponds to the lower border of the eleventh rib. The intermediate margin is the ridge which separates the renal and gastric surfaces. The inferior border separates the diaphragmatic from the colic surface (Gray's, 2010).

The spleen is almost entirely surrounded by peritoneum, which is adherent to its capsule firmly. It is held in position by two folds of this membrane. One, the phrenicolienal ligament, is derived from the peritoneum; the lienal vessels pass between its two layers. The other fold, the gastrolienal ligament, is also formed of two layers, where they meet between the spleen and stomach. The short gastric and left gastroepiploic branches of the lienal artery run between its two layers. The lower end of the spleen is supported by the phrenicocolic ligament (Gray's, 2010)

Blood vessels of the Spleen:

The Splenic artery:

It is the largest branch of the coeliac trunk. It extends along the superior margin of the pancreas. It is composed of 4 anatomic divisions, including suprapancreatic, pancreatic, prepancreatic and prehilar segments (**Arinci and Elhan, 2012**).