BAALC expression and FLT3 Internal tandem duplication mutations in acute myeloid leukemia

Thesis

Submitted for partial fulfillment
Of the doctor degree in Clinical and Chemical Pathology
Faculty of medicine Cairo University

Presented by

Dina Mokhtar Sayed Mohamed

MbBch, MSc Clinical Pathology

Under supervision of

Prof Dr: Tayseer kamel Eiada

Professor of Clinical and Chemical Pathology Faculty of medicine Cairo University

Prof Dr: Nabel Mohsen El Danasouri

Professor of Clinical and Chemical Pathology Faculty of medicine Cairo University

Dr: Heba Mahmoud Gouda

Lecturer of Clinical and Chemical Pathology Faculty of medicine Cairo University

> Faculty of medicine Cairo University 2009

Acknowledgment

First and foremost thanks to Allah

The most beneficial and merciful

Words will never be able to express my deepest gratitude to all those who helped me to make this work possible.

I would like to express my sincere appreciation, deepest feeling of gratitude, greatest love and respect to Prof. Dr. Tayseer Kamel Eiada, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for her continuous encouragement, advice, close supervision, kind help and valuable guidance throughout this work.

I am especially grateful to Prof. Dr. Nabel Mohsen El-Danasouri, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University for his great efforts, patience, meticulous supervision, unlimited support and for the time he freely gave for guiding me throughout this work.

I would like to thank Dr. Heba Mahmoud Gouda, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, whose generous contribution and advice have been of great help.

I would like to express my thankfulness to **Dr.Mervat Khorseid**, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for her help and support.

Special thanks to all my professors and colleagues for their great help and support.

Thanks to my father,
all my family,
friends and all those
who gave me the
support.

Special thanks to Professor Dr: Tarek Mamoun, my husband, who helped me in fulfilling this thesis.

Abstract

Brain And Acute Leukemia Cytoplasmic (BAALC) overexpression has been reported in acute myeloid leukemia (AML). In the present study, BAALC overexpression was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR) in 30 patients with de novo AML as well as 20 normal subjects as a control group. Internal tandem duplication mutation of Fms – like tyrosine kinase 3 (FLT3/ITD) and length mutation of FLT3 (FLT3/LM) were also analyzed. BAALC overexpression was detected in (46.6%) of the patients while FLT3/ITD was detected in (63.4%) and FLT3/LM (30%). All the control subjects were negative for the three types of mutations. In BAALC positive patients, the mean total leucocytic count is much lower than BAALC negative patients but the difference did not reach a statistically significant level. BAALC positive overexpression was significantly associated with higher blast percentage in peripheral blood and bone marrow blasts. BAALC overexpression was seen in FAB subtypes M1, M2, M4 and M5 and was absent in M3. Most of BAALC positive patients (57%) had normal karyotyping and 56% coexpress FLT3/ITD. The coexpression of both genes showed the worst prognosis, as none of the patients achieved complete remission and 62% of the patients died. Thus, it can be stated that BAALC alone or in conjunction with FLT3/ITD show the worse response to induction chemotherapy.

Key words: Acute myeloid leukemia (AML), Brain And Acute Leukemia Cytoplasmic (BAALC), Internal tandem duplication (FLT3/ITD), length mutation (FLT3/LM) and reverse transcriptase- polymerase chain reaction (RT-PCR).

Table of contents

Item	Page
List of figures.	i
List of tables.	iv
List of abbreviations.	vii
Introduction and aim of the work.	1
Review of literature:	
Chapter 1: Acute myeloid leukemia.	
• Definition	3
Incidence	3
Predisposing factors.	3
• Leukemogenesis	5
Clinical manifestations and complications of AML	7
Classification of AML.	9
Diagnosis.	36
Classic Prognostic Criteria of Acute Myeloid Leukemia.	42
Recent prognostic molecular markers of AML.	43

Chapter 2: BAALC gene	
Genomic organization of the human BAALC gene	49
 The human BAALC gene Protein and its transcripts. 	49
BAALC expression.	51
Normal function of the BAALC gene.	52
Role of BAALC gene in Leukemogenesis.	52
BAALC and the disease resistance.	53
Chapter3: FLT3 gene.	
•	54
LT3 gene.	
• FLT3 Ligand.	55
• FLT3 receptor.	56
• FLT3 receptor expression (CD135).	56
FLT3 receptor signaling.	57
FLT3 function in normal hemopoietic cells.	58

• FLT3 receptor expression in human leukemias.	58
• Types of FLT3 mutations in human leukemias.	59
• FLT3 mutant signaling.	62
Prognostic significance of FLT3 mutation in leukemia.	64
• FLT3 inhibitors.	66
• FLT3 antibodies based therapeutics.	66
Subjects and methods	67
Results	79
Discussion	121
Summary	133
References	136
Arabic summary	

List of Tables

Table	Description	page
Table (1)	Conditions predisposing to the development of AML	4
Table (2)	FAB classification of AML	13
Table (3a)	WHO classification of AML	13
Table (3b)	The WHO classification "AML not otherwise categorized	14
Table(4)	RecentWHO classification	15
Table (5)	Score for biphenotypic leukemia	33
Table (6)	Cytochemical stains used for diagnosis of AML	39
Table (7)	Panel of monoclonal antibodies identifying antigens expressed mainly in myeloid cells	39
Table (8)	Prognostic factors of acute myeloid leukemia	43
Table (9)	Genetic Abnormalities in Normal Cytogenetic AML	44
Table (10)	Data of the control group	80
Table (11)	Clinical data of the patients at diagnosis	81
Table (12)	Laboratory characteristics of the patients at diagnosis	83
Table (13)	Treatment outcome of AML patients at diagnosis	84
Table (14)	Comparison between positive and negative BAALC	85

	overexpression, FLT3 /ITD and FLT3/ LM gene	
	mutations in AML patients	
Table (15)	Comparison between the AML patients and the	86
	control group as regards BAALC overexpression	
Table (16)	Comparison between BAALC positive and negative	87
	AML patients regarding their clinical data	
	Comparison between BAALC positive and negative	91
Table (17)	AML patients regarding their laboratory data	
Table (18)	Comparison between BAALC positive and negative	94
	AML patients regarding outcome of treatment	
		0.7
Table (19)	Comparison between the AML patients and the	95
	control group as regard FLT3 /ITD mutation	
Table (20)	Comparison between FLT3/ITD positive and	96
	negative AML patients regarding their clinical data	
Table (21)	Comparison between FLT3/ITD positive and	100
	negative AML patients regarding their laboratory	
	data	
Table (22)	Comparison between FLT3/ITD positive and	103
	negative AML patients regarding outcome of	
	treatment	
Table (23)	Comparison between the AML patients and the	104
	control group as regard FLT3 /LM mutation	

Table (24)	Comparison between FLT3/LM positive and	105
	negative AML patients regarding their clinical data	
Table (25)	Comparison between FLT3/LM positive and	109
	negative AML patients regarding their laboratory	
	data	
Table (26)	Comparison between FLT3/LM positive and	112
	negative AML patients regarding outcome	
Table (27)	Characterization of the AML patients according to	114
	BAALC overexpression and FLT3/ITD mutation	
	status of treatment	
Table (28)	Comparison between BAALC FLT3/ITD positive	115
	and negative AML patients regarding the outcome	
	of treatment	
Table (29)	Statistical analysis for the outcome of treatment in	116
	AML patients in relation to BAALC	
	overexpression, FLT3/ITD and FLT3/LM mutations	

List of figures

Figure (1)	The method of assigning patients to the different diagnostic categories		
Figure (2)	The structure of chromosome 8 as regard the location of BAALC gene q22 .3		
Figure (3)	Genomic organization and transcripts of the human BAALC gene		
Figure (4)	Figure (4) The structure of chromosome 13 as regard the location of FLT3 gene q12 .13		
Figure (5)	Structural organization of the human FLT3 gene	55	
Figure (6)	Structure of human FLT3 receptor	56	
Figure (7)	Duplication of exon 14 in FLT3 ITD	60	
Figure (8)	FLT3 mutant signaling	63	
Figure (9)	Comparison between positive and negative BAALC overexpression, FLT3 /ITD and FLT3/ LM Gene mutations in AML patients	85	
Figure (10)	Comparison between BAALC positive and negative AML patients regarding their clinical data	88	
Figure (11)	Comparison between BAALC positive and negative AML patients as regard blast % in PB and BM	92	
Figure (12)	Comparison between BAALC positive and negative AML patients regarding FAB classification	92	

Figure (13)	Comparison between BAALC positive and negative AML patients regarding cytogenetic abnormalities	93
Figure (14)	Comparison between BAALC positive and negative AML patients regarding outcome of treatment	94
Figure (15)	Comparison between FLT3/ITD positive and negative AML patients regarding their clinical data	97
Figure (16)	Comparison between FLT3/ITD positive and negative AML patients as regards blast % in PB and BM	101
Figure (17)	Comparison between FLT3/ITD_positive and negative AML patients as regards FAB classification	101
Figure (18)	Comparison between FLT3/ITD positive and negative AML patients as regards cytogenetic abnormalities	102
Figure (19)	Comparison between FLT3/ITD positive and negative AML patients regarding outcome of treatment	103
Figure (20)	Comparison between FLT3/LM positive and negative AML patients regarding their clinical data	106
Figure (21)	Comparison between FLT3/LM positive and negative AML patients regarding blast % in PB and BM Statistical comparison between FLT3/LM positive and negative AML patients regarding blast % in PB and BM	110
Figure (22)	Comparison between FLT3/LM positive and negative AML patients regarding FAB classification	110
Figure (23)	Comparison between FLT3/LM positive and negative AML patients as regard cytogenetic abnormalities	111
Figure (24)	Comparison between FLT3/LM positive and negative AML patients regarding outcome of treatment	112
Figure (25)	Detection of BAALC gene mutation by RT-PCR	117

List of figures

Figure (26)	Detection of FLT3/ITD gene mutation by RT-PCR	118
Figure (27)	Detection of FLT3/LM gene mutation by RT-PCR	119

List of Abbreviations

Abbreviation	The Full Term
aa	Amino acid
ABL	Abelson strain of murine leukemia virus
ALL	Acute lymphoblastic leukemia
AMbL	Acute myeloblastic leukemia
AMgL	Acute megakaryocytic leukemia
AML	Acute myeloid leukemia
AMoL	Acute myelomonocytic leukemia
ANLL	Acute non lymphoblastic leukemia
AP	Acid phosphatase
ARA-C	cytarabine
ATRA	All trans retinoic acid
BAX	Bcl ₂ - associated protein
Bcl ₂	B-cell lymphoma/leukemia-2 oncogene.
BCR	Break point cluster region
BM	Bone marrow
bp	Base pair
CBF	Core binding factor
CBFα	Core binding factor alpha subunit.

СВГВ	Core binding factor beta subunit.
CD	Cluster of differentiation
cDNA	Complementary DNA
СЕРВА	CCAAT/enhancer binding protein-α
CNS	Central nervous system
CR	Complete remission
del	Deletion
DFS	Disease free survival
DIC	Disseminated intravascular coagulopathy
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleoside triphosphate
DW	Distilled water
ECM	Extracellular matrix
EDTA	Ethylene diamine tetra-acetic acid
EM	Electron microscopy
ETO	Eight twenty one
EVI1	Ectopic virus integration 1
FAB	French American British
FLT3	Fetal liver tyrosine kinase 3
FLT3/ITD	Internal Tandem duplication
FLT3/LM	FLT3/length mutation.
FLT3-L	Fetal liver tyrosine kinase 3 ligand