A Simple Index To Predict Myocardial
Infarction Size In Patients With Acute
STEMI Undergoing Primary PCI.
Correlation With Myocardial
Perfusion Imaging.

Thesis Submitted by

Osama Amin Abd EL-Hamid, MS.C

In Partial Fulfillment of

MD Degree in Critical Care Medicine

Supervisors

Alia Abd.El Fattah, MD

Professor of Critical Care Medicine
Critical Care Department
Cairo University

Tarek EL-Gohary, MD.

Professor of Critical Care Medicine
Critical Care Department
Cairo University

Akram Abd EL.Bary, MD

Ass.Professor of Critical Care Medicine

Critical Care Department

Cairo University

Wael Samy, MD.

Lecturer of Critical Care Medicine
Cairo University

ACKNOWLEDGMENT

Praise be to Allah, the creator and sustainer of the world, who has said in his holy Quran" We raise to degrees (of wisdom) whom we please, but overall endued with knowledge is one, the all-knowing" (Yusuf 76).

Thank to Prof. Dr. Sherif Mokhtar, our Master mind, I always owe him much. He offered us not only the idea and facilities to complete our researches but also the spirit of being eager to gain more experience and skills. Words are not sufficient to express my deep gratitude for him.

I would like to start by sending my deepest gratitude and sincere thanks to Dr. Alia Abd.EL.fattah, professor of Critical Care Medicine Department, Cairo University, for her help and continuous support. I am extremely grateful for her advice and for her guidance and support throughout that work.

Special thanks to Dr. Tarek EL.gohry, Professor of Critical Care Medicine, Cairo University, for his help and continuous support. I am extremely grateful to him for his generous advice and for his guidance and assistance throughout the whole work.

I am deeply thankful to **Dr. Akram Abd-El.Bary**, Assistant professor of Critical Care Medicine, Cairo University, for his guidance. He teached me how to approach matters in a scientific and displined way, kindness and constructive advice and for treating me in a brotherly way.

I would like to express my deep sense of gratitude to **Dr. Wael Samy**, Lecturer of Critical Care Medicine who had spared no effort in guiding me throughout the long and tiring task of writing this thesis.

Finally I am so thankful and honored to belong to the critical care medicine department, the land of imagination, innovation and fruitful research. Many thanks should go especially to the catheter laboratory team for their support.

Osama Amin

Abstract

Objectives: The major determinant of final infarct size for a given coronary occlusion is the size of the myocardial area- at-risk. We propose herein a new QCA index to predict area-at-risk in patients with myocardial infarction (MI).

The aim of the study was to assess the predictive QCA value of simple index in STEMI systolic function reduction and relation its to adverse clinical outcome.Correlating it with nuclear imaging.

Study design: 52 acute MI patients with their first coronary syndrome incident acute were consecutively and prospectively enrolled in to the study. QCA index was calculated by dividing culprit segment diameter by the sum of diameters of the left anterior descending, circumflex. their proximal right coronary arteries at segments. We evaluated the in hospital follow-up rates of endpoints. which were major clinical defined as non-fatal MI, stroke, and death, new congestive heart failure (CHF).

Simple QCA index showed **Results:** no correlation with systolic function of the heart, WMSI, Cardiac and in clinical enzymes hospital outcome **Conclusion:** A derived simple index from coronary angiography the time of primary at percutaneous coronary intervention cannot predict LV systolic function loss and adverse clinical outcome in patients with acute MI.

Contents

Introduction		7
Aim of The Worl	k	10
Review of Litera	ture	
Chapter I:	Acute Myocardial infarction	11
Chapter II:	Primary PCI	22
Chapter III:	QCA	40
Chapter IV:	Myocardial perfusion imaging	52
Patients & Meth	ods	69
Results		92
Discussion		122
Summary		130
Limitations of The	study	134
Conclusion		135
References		136
Arabic Summary	y	3-1

List of Tables

Item	Page
Table (1): Distribution of the studied cases as regards clinical risk	
factors.	
Table (2): Inhospital clinical outcome data of the study population.	
Table (3): Echocardiographic examination of the study population.	
Table(4): Distribution of the studied cases as regards Culprit vessel.	
Table (5): Simple QCA Index data of the present study:	
Table (6) Anterior versus inferior STEMI .	
Table (7) Defect size data of the present study.	
Table (8): Anterior versus inferior STEMI.	
Table (9): Corelation between presentation time in hours & In	
hospital clinical outcome.	
Table (10): Comparison between LAD & non-LAD patients.	
(11): Comparison between LAD & non-LAD patients regarding EF%:.	
Table (12): Comparison between LAD & non-LAD patients	
regarding WMSI.	
Table (13): Anterior versus inferior STEMI.	

List of figures

Fig. No	Title	Page
1	Plaque rupture exposes thrombogenic lipid. "White	
	thrombus" is formed by adhering activated	
	platelets.	
2	Thrombin activation leads to a mesh of fibrin and	
	red blood cells or "red thrombus".	
3	Reconstruction with 3-D CardiOp-B system of	
	proximal left anterior descending Artery	
4	Image calibration using contrast-filled injection	
	catheter	
5	After having traced a central line the software	
	recognizes the margins elaborating automatically	
	the contours.	
6	Software algorithm reconstructs the reference	
	coronary segment	
7	Two-year survival in 274 patients who had infarct	
	size measured by 99mTc-sestamibi at discharge at	
	Mayo Clinic.	
9	Proximal segment diameter of (LAD) assessed by	
	QCA of the patient number 14 who presented with	
	inferior STEMI.	
10	Drawing a second diameter of (LCV) assessed by	
10	Proximal segment diameter of (LCX) assessed by	
	QCA of the patient number 14 who presented with inferior STEMI	
11		
11	Proximal segment diameter of (IM) assessed by	
	QCA of the patient number 14 who presented with inferior STEMI.	
12		
12	culprit segment diameter (RCA) assessed by QCA	
	of the patient number 14 who presented with inferior STEMI.	
13	culprit segment diameter (LAD) assessed by QCA	
13	of the patient number 22 who presented with	
	anterior STEMI.	
14	Proximal segment diameter (LCX) assessed by	
	QCA of the patient number 22 who presented with	
	anterior STEMI .	
15	Proximal segment diameter (RCA) assessed by	
	QCA of the patient number 22 who presented with	
	anterior STEMI .	
16	Figure (16): LV segmentation using 20-segments	
	model .	

17	Myocardial perfusion imaging (rest study) in patient number 14 with anterior MI with defect percentage 20%	
18	Myocardial perfusion imaging (rest study) in patient number 14 with anterior MI with defect percentage 20%.	
19	Myocardial perfusion imaging (rest study) in patient number 22 with inferior MI with defect percentage 18%.	
20	Myocardial perfusion imaging (rest study) in patient number 22 with inferior MI with defect percentage 18%.	
21	Age distribution of study cases.	
22	Gender distribution of study cases.	
23	Hypertension distribution of study cases.	
24	Distribution of dyslipidemic to non-dyslipidemic patients	
25	Distribution of diabetic to non-diabetic patients.	

26	Relation of smokers to non-smokers.	
27	Family history of IHD	
28	Distribution of study population regarding location of MI.	
29	Distribution of the studied cases as regards Culprit vessel.	
30	Distribution of study population regarding QCA index.	
31	Corelation between Simple QCA Index & EF%.	
32	Corelation between WMSi & QCA index	
33	Corelation between CPK level & QCA index	
34	Distribution of study population regarding infarction size.	
35	Corelation between defect size & Inhospital clinical outcome	
36	Corelation between defect size & Site of Myocardial infarction.	
37	Corelation between Infarction size & EF%.	
38	orelation between WMSi & Infarction size	
39	Corelation between presentation time & Infarction size.	
40	Corelation between CPK level & Infarction size .	

41	Correlation between simple QCA index and defect	
	size.	
42	Corelation between presentation time & In hospital clinical outcome.	
43	Corelation between Presentation time &WMSi.	
44	Corelation between Presentation time &EF%.	
45	Corelation between LAD & non LAD as regard EF%.	
46	Corelation between LAD & non LAD as regard WMSI.	
47	Comparison between LAD & non-LAD patients regarding WMSI	
48	Corelation between LAD & non LAD as regard WMSI.	

List of Abbreviations

AAR	Area at risk.
ACC	American College of Cardiology
ACS	Acute coronary syndrome
AHA	American Heart Association
AIDS	Acquired immune deficiency syndrome.
AMI	Acute myocardial infarction
ASE	American Society of Echocardiography
AV	Atrio.ventricular.
BNP	Brain natriuretic peptide
CABG	coronary artery bypass grafting
CAD	Coronary artery disease
CBC	Complete blood count.
CHF	Congestive heart failure
СК	Creatine Kinase
СОР	cardiac output
CTFC	Corrected Timi flow count .
cTnI	Troponin I
CVS	Cerebrovascular stroke
IDDM	Insulin dependant diabetis mellitus .
ECG	electrocardiograph
ESC	European Society of Cardiology
EF	Ejection fraction
ESV	End systolic volume
FBS	Fasting Blood Sugar
FH	Family history
FP	Flatpanel.
GP	Glycoprotein
HDL	High-density lipoprotein
HF	Heart failure
HTN	Hypertension
IHD	Ischemic heart disease
IF	Infarct size .
IVUS	Intravascular ultrasonography .
LA	Left atrium
LAD	Left Anterior descending
LBBB	left bundle branch block

LCX	Left circumflex artery.
LDL	Low density lipoprotein
LV	Left Ventricle
LVEF	left ventricular ejection fraction
MACE	Major Adverse Cardiovascular end points.
MAR	Myocardial at risk.
MBG	Myocardial blush grade.
MLD	Minimal lumen diameter.
MR	Mitral regurge.
MRI	magnetic resonance imaging
MVD	Multivessel Disease.
PCI	Primary percutaneous intervention
PPCI	primary percutaneous coronary intervention
PT	Prothrombin Time
PTCA	Percutaneous transluminal coronary angioplasty
P value	Probability value
PMVs	Premature ventricular beats.
QCA	Quantitative Coronary Analysis
RBS	Random Blood Sugar.
RCA	Right Coronary Artery
RCA	Right Coronary Artery
RII	Relative Importance Index .
	netative importance mack.
RV	Right ventricle
RVD	Refrence vessel diameter.
RVF	Right ventricular failure.
SD	Standard deviation.
SPECT	single-photon emission computed tomography
SPSS	Statistical Package for the Social Science
STEMI	ST segment elevation myocardial infarction
Tc 99	Technicium 99 .
TDI	tissue Doppler imaging
TIMI	Thrombosis In Myocardial Infarction
TMPG	TIMI Myocardial Perfusion Grade
UA	Unstable angina
WMSI	Wall motion score index.
VF	Venricular fibrillation .

VT	Venricular tachycardia .
VSD	Ventricular septal defect.

Introduction

ST segment elevation myocardial infarction (STEMI) constitutes 40% of all acute myocardial infarctions (AMI), which continues to be a significant public health problem in both developed and developing counties (1).

Primary percutaneous intervention (PCI) is now classified as class I indication in STEMI in the Guidelines of the European Society of Cardiology (ESC) (2).

Reperfusion therapy is the cornerstone of the treatment of patients with acute ST elevation myocardial infarction (STEMI) (3). Many randomized clinical trials have shown that primary percutaneous coronary intervention (PCI) is superior to thrombolytic therapy in the treatment of patients with STEMI (4).

The aim of reperfusion therapy for many years has focused on achieving epicardial artery patency at the site of the occlusive thrombus. It is now possible, through advances in interventional techniques and adjunctive pharmacological treatment, to achieve TIMI (Thrombosis In Myocardial

Infarction) grade 3 epicardial flow (normal) in 95% of patients_(5,6).

Despite this achievement, mortality, although declining, still remains high. This is possibly because despite restoration of TIMI grade 3 flow, 40% of patients do not achieve microvascular flow, which should be the goal of reperfusion therapy (7).

Successful primary PCI within 3–24 hours of the onset of chest pain has been associated with improved LV systolic function at a mean follow-up period of 22 months (8)... Other studies of primary PCI have also reported improved LV systolic function compared to thrombolysis (9).

Early improvement of perfusion after MI will improve left ventricle function and decrease the infarction area, thus decreasing mortality(10,11). The efficacy of reperfusion treatment may be shown indirectly with electrocardiography (ECG), by regression of ST elevation, but there is a need for methods to demonstrate left ventricle and microvascular function improvement(12).

Over the last 20 years, nuclear cardiology has become a mainstay in the evaluation of ischemic heart disease. In the setting of acute coronary syndromes (myocardial infarction or unstable angina), myocardial perfusion imaging has emerged as an important tool in assessing the functional significance of angiographic coronary stenoses, evaluating the efficacy of therapeutic intervention. and risk-stratifying patients in the post infarction period (13).

Myocardial perfusion imaging possesses not only diagnostic but also prognostic value, because it permits stratification of patients into categories of risk for future cardiac events.

The major determinant of final infarct size for a given coronary occlusion is the size of myocardium that the artery perfuses. Defining the initial area-at-risk (AAR) for infarction has major clinical implications since it permits an accurate estimate of myocardial salvage provided by reperfusion therapies. We proposed a new index 'Relative Importance Index (RII)' to predict potential infarct size in patients with acute MI.