

Molecular studies on antibiotic resistant Gram negative bacteria isolated from Neonatal Intensive Care Unit and their susceptibility to some medicinal plant extracts

Thesis submitted for a Ph.D. degree in Science (Microbiology)

(Medical bacteriology)

By **Eslam El-Sayed Mostafa Mikkawye**

B.Sc. in Biochemistry & Microbiology, Ain Shams University (2005)

M.Sc. in Microbiology— Ain Shams University (2009)

Supervisors

Prof. Dr. Mohamed Khaled Ibrahim

Professor of Bacteriology
Vice Dean for education and students affairs
Faculty of Science,
Ain Shams University

Dr. Amgad Ahmed Ezzat

Lecturer of Medical Microbiology and Immunology Faculty of Medicine Al-Azhar University (Assiut)

Dr. Sahar Tolba Mohamed

Associate Prof. of Microbiology Microbiology Department, Faculty of Science, Ain Shams University

Dr. Amina Anwar Ateya Unis

Associate Professor of Pharmacology Ras Al Khaimah University for Medicine and Health Sciences UAE

Microbiology Department,
Faculty of Science,
Ain Shams University
2017

Approval Sheet

Molecular studies on antibiotic resistant Gram negative bacteria isolated from Neonatal Intensive Care Unit and their susceptibility to some medicinal plant extracts

Thesis submitted for a Ph.D. degree in Science (Microbiology)

By

Eslam El-Sayed Mosfata Mikkawye

B.Sc. in Microbiology& Biochemistry, Ain Shams University (2005) M.Sc. in Microbiology– Ain Shams University (2009)

Supervision committee

Ain Shams University.

1- Prof. Dr. Mohamed Khaled Ibrahim
Professor of Bacteriology, Vice Dean for Education and Students Affairs, Faculty
of Science, Ain Shams University
2- Dr. Sahar Tolba Mohamed
Associate Prof. of Microbiology, Microbiology Department, Faculty of Science,
Ain Shams University
3- Dr. Amina Anwar Ateya Unis
Associate Professor of Pharmacology, Ras Al Khaimah University for Medicine and Health Sciences, UAE.
4- Dr. Amgad Ahmed Ezzat
Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Al-
Azhar University (Assiut).
This thesis is for Ph.D. degree in Science (Microbiology) has been
approved by:
1- Prof. Rawya Fathy Mahmoud Gamal
Prof. Emeritus of Microbiology –Faculty of agriculture, Ain Shams University
2- Prof. Hala Mahmoud Nour El dein
Professor of Microbiology- National Center for Radiation Research Technology
3- Prof. Dr. Mohamed Khaled Ibrahim
Professor of Bacteriology, Vice Dean for education and students affairs, Faculty
of Science Ain Shams University

Examination Date: //2017 Approval date: //2017

Associate Prof. of Microbiology, Microbiology Department, Faculty of Science,

4- Dr. Sahar Tolba Mohamed.....

University council approval: //2017

بسم الله الرحمن الرحيم

"قالوا سبحانك لاعلم لنا إلا ماعلمتنا إنك أنت العليم الحكيم"

صدق الله العظيم سورة البقرة الآية (32)

DEDICATION

I would like to dedicate this work to my beloved parents, sisters and my wife for their encouragement, cooperation, sincere help and support and also to my daughter wishing here a happy and successful life. Great thanks to all of them.

I would like to dedicate the benefit of this work to the soul of my grandfather.

Eslam Mikkawye

ACKNOWLEDGMENT

First, I am deeply thankful to ALLAH for giving me everything I wish, strengthen and helping me to complete this work.

I would like to express my gratitude and appreciation to Prof. Dr. Mohamed Khaled Ibrahim, Professor of Bacteriology, Microbiology Department, Faculty of Science, Ain Shams University for his help and continuous support. He was the best advisor, and expert supervisor to bring this thesis to more than satisfactory finish.

My grateful and sincere thanks to my dear Dr. Sahar Tolba Mohamed, Associate Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University, for her help, encouragement, continuous guidance, valuable comments, and constructive criticism which was a great assist for this work.

My deep thanks to my dear Dr. Amgad Ahmed Ezzat Othman, for his kind help and constructive criticism. My sincere gratitude is greatly expressed to him.

My special thanks to Dr. Amina Anwar Ateya Unis, Associate Professor of Pharmacology, Ras Al Khaimah University for Medicine and Health Sciences, UAE.

I would like to express my thanks to all of my friends, and colleagues from Tabuk and Ain shams Universities and my students in Tabuk University for their encouragement and support.

Finally, I would like to acknowledge the staff of Research, Studies and Training Center on vectors of diseases and Microbiology Department, Faculty of Science, Ain Shams University for making the research facilities available to me and for their help.

Eslam Mikkawye

CONTENTS

Title	Page No.
List of Contents	I
List of Tables	VI
List of Figures	VIII
List of Abbreviations	IX
Abstract	
1. Introduction	1
2. Review of Literature	4
2.1. History of antibiotics	4
2.2. Multidrug-resistant Gram negative bacteria	5
2.3. Nosocomial infections	7
2.4. Infections in neonatal intensive care unit (NICU)	8
2.5. Mechanism of antibiotic resistance in bacteria	8
2.5.1. Alteration of the antibiotic via modifying enzymes	9
2.5.2. Modification of antibiotics	9
2.5.3. Modification of the antibiotic target	9
2.5.4. Active efflux pumps	10
2.5.5. Physical barriers	10
2.6 The role of integrons in dissemination of antibiotic resistance	11

2.7. Extended spectrum β-lactamase (ESBL) producing bacteria		
2.7.1. Mechanism of ESBL resistance	15	
2.7.2. Types of ESBLs	15	
2.7.2.1 TEM β-lactamases	15	
2.7.2.2. SHV β-lactamases	16	
2.7.2.3. CTX-M β –Lactamases	17	
2.8. Examples of some nosocomial Gram negative bacteria	18	
2.8.1. Providencia Stuartii	18	
2.8.2. Stenotrophomonas maltophilia	18	
2.8.3. Sphingomonas paucimobilis	20	
2.8.4. Acinetobacter baumannii	21	
2.8.5. Enterobacter spp.	22	
2.8.6. Proteus mirabilis	22	
2.8.7. Serratia marcescens	23	
2.8.8. Pseudomonas aeruginosa	24	
2.8.9. Klebsiella pneumonia	25	
2.8.10. Escherichia coli		
2.8. Medicinal plants and their role in treatment of many	28	
bacterial infections	20	
2.8.1. Some important medicinal plants	29	
2.8.1.1. Cassia angustifolia	29	

2.8.1.2. Nigella sativa L.	30	
2.8.1.3. Saussurea lappa L.`	31	
3. Materials and Methods		
3.1 Materials	34	
3.1.1 Culture media:	34	
a) MacConkey agar	34	
b) Mueller-Hinton (MH) agar	34	
c) Brain Heart infusion (BHI) Broth	34	
d) Nutrient agar (NA)	35	
3.1.2 Chemicals and solvents	35	
3.1.3 Biochemicals	36	
3.1.4 Equipment	36	
3.1.5 Microbiological kits	37	
3.1.6 Buffers and reagents	37	
3.2 Methods	37	
3.2.1 Collection of clinical specimens from neonatal intensive care unit (NICU).	37	
3.2.2 Isolation and storage of Gram negative bacteria	38	
3.2.3 Identification of Gram negative bacteria		
3.2.4 Identification and determination of minimum inhibitory concentrations (MICs) of bacterial isolates by Vitek 2		
3.2.5. Identification of bacterial isolates by API 20E strips	47	

3.2.6 Screening for ESBL-produsing isolates	47
3.2.7.Genotypic characterization of selected bacterial isolates	47
3.2.7.1 Preparation of DNA template	48
3.2.7.2 PCR primers	48
3.2.7.3 PCR	49
3.2.7.4 Agarose gel electrophoresis	49
3.2.8. Plant Collection	51
3.2.8.1. Plant Preparation	51
3.2.8.2. Plant Extraction	52
3.2.8.3. Preliminary phytochemical analysis	53
3.2.8.3.1. Test for tannins:	53
3.2.8.3.2. Test for saponins:	53
3.2.8.3.3. Test for flavonoids:	53
3.2.8.3.4. Test for alkaloids	54
3.2.8.3.5. Test for sterols	54
3.2.8.3.6 Test for phenols	54
3.2.8.4. Screening for antimicrobial activity of the plant	54
extracts	34
4. Results	56
4.1 Patients data and sampling	56
4.2 Isolation and identification of bacterial isolates	56
4.3 Percentage of antibiotic resistance of bacterial isolates	58

4.4 Minimum inhibitory concentrations (MIC)	63
4.5 Genotypic characterization of the clinical isolates	70
4.5.1. Detection of integrase genes	70
4.5.2. Detection of ESBL genes	70
4.6. Screening of antibacterial activity of plant extracts with different polar solvents	76
4.7. Qualitative analysis of the phytochemicals of plant extracts	78
4.8. Antibacterial activity of methanolic plant extracts	79
5. Discussion	87
6. Summary	98
7. References	101
Arabic summary	
Arabic abstract	

LIST OF TABLES

Table No	Title	Page No	
1	Table (1): MIC of the antibiotics used in this study as provided by the supplier (BioMerieux).	42	
2	Table (2) Primers used in this study	50	
3	Table (3): Plants used in this study	51	
4	Table (4): Patients data and source of samples	56	
5	Table (5): Identification of the isolated Gram negative bacteria	59	
6	Table (6): MIC and Susceptibility of bacterial isolates to different types of antibiotics	65	
7	Table (7): MIC and Susceptibility of <i>Klebsiella</i> pneumoniae isolates to different types of antibiotics.	66	
8	Table (8): MIC and Susceptibility of <i>Acinetobacter</i> baumannii isolates to different types of antibiotics	67	
9	Table (9): MIC and Susceptibility of <i>Escherichia coli</i> isolates to different types of antibiotics		
10	Table (10): MIC and Susceptibility of <i>Pseudomonas</i> aeruginosa isolates to different types of antibiotics		
11	Table (11): Detection of class 1, 2 and 3 integrons and ESBL genes in multi drug resistant (MDR) Gram negative isolates	72	

12	Table (12): Antibacterial activity of plant extracts with different polar solvents	77
13	Table (13): Qualitative analysis of the phytochemicals of methanolic plant extracts	78
14	Table (14): Antibacterial activity of methanolic plant extracts on the selected multi drug resistant (MDR) Gram negative bacterial isolates	80
15	Table (15): Antibacterial activity of plant extracts on the Klebsiella pneumoniae isolates	82
16	Table (16): Antibacterial activity of plant extracts on Acinetobacter baumannii isolates	83
17	Table (17): Antibacterial activity of plant extracts on the selected multi drug resistant (MDR) Escherichia coli	85
18	Table (18): Antibacterial activity of plant extract on Pseudomonas aeruginosa isolates	86

LIST OF FIGURES

Figure	Title	Page
No	Title	
1	Figure (1): General antibiotic resistance profile of	11
	Gram-negative bacteria.	11
2	Figure (2): A, AST-N209 cards and B, Vitek 2 system	46
<u></u>	compact used in the determination of MIC.	40
3	Figure (3): Dried plant samples	52
4	Figure (4): Percentage of antibiotic resistance of some	50
4	bacterial isolates	60
5	Figure (5): Percentages of antibiotic resistance of	60
3	Pseudomonas aeruginosa isolates	00
6	Figure (6): Percentages of antibiotic resistance of	61
	Klebsiella pneumoniae isolates	01
7	Figure (7): Percentages of antibiotic resistance of	62
	Acinetobacter baumannii isolates	02
8	Figure (8): Percentages of antibiotic resistance of	62
O	Escherichia coli isolates	02
9	Fig. (9): PCR product of integrase Int I, II and III	73
10	Fig. (10): PCR amplification of ESBL genes: blaCTX,	74
10	blaSHV and blaTEM	/4
11	Figure (11): Distribution of integrons and ESBL genes	75
11	in multi drug resistant (MDR) Gram negative isolates	13

ABBREVIATIONS

(A. baumannii)	Acinetobacter baumannii
(API)	Analytical profile index
(AST)	Antimicrobial susceptibility testing
(BHI)	Brain Heart infusion
(bla)	β-lactamase
(CF)	Cystic fibrosis
(COPD)	Chronic obstructive pulmonary disease
(CS)	Conserved sequence
(CSF)	Cerebrospinal fluid
(CTX-M)	Cefotaxime hydrolyzing capabilities
(CVL)	Central venous line
(DNA)	Deoxyribonucleic acid
(EDTA)	Ethylenediaminetetraacetic acid
(EONS)	Early-onset neonatal sepsis
(ESBL)	Extended-spectrum-\(\beta\)-lactamase
(ETT)	Endotracheal tube
(EUCAST)	European Committee on Antimicrobial Susceptibility
	testing
(F)	Female
(FeCl)	Ferric Chloride

(I)	Intermediate
(ICU)	Intensive Care Unit
(int)	Integron
(K. pneumoniae)	Klebsiella pneumonia
(KPC)	Klebsiella pneumonia carbapenemase-producing
(M)	Male
(MDR)	Multi drug resistant
(MH)	Mueller-Hinton
(MHA)	Mueller Hinton Agar
(MIC)	Minimum inhibitory concentration
(NA)	Nutrient agar
(NaCl)	Sodium chloride
(NICU)	Neonatal Intensive Care Unit
(NIs)	Nosocomial infections
(PCR)	Polymerase chain reaction
(Ps. aeruginosa)	Pseudomonas aeruginosa
(R)	Resistance
(RNA)	Ribonucleic acid
(S)	Sensitive
(S. maltophilia)	Stenotrophomonas maltophilia
(SHV)	Sulfhydryl variable
(TEM)	Temoneira