

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

CORRELATIVE STUDY BETWEEN PLASMA RENIN

ACTIVITY, SERUM LEPTIN AND SERUM INSULIN IN

PATIENTS WITH CONTROLLED AND

UNCONTROLLED ESSENTIAL HYPERTENSION

Thesis

Submitted to the Faculty of Medicine, University of Alexandria,

in partial fulfillment of the requirements of the degree of

Master of Clinical and Chemical Pathology

By

Mohamed Hamimi Abdallah

MBBCh, Alex.

Facutly of Medicine

University of Alexandria

2002

SUPERVISORS

Prof. Dr. Malak Mahmoud Abd El-Hay

Prof. of Clinical and Chemical Pathology,

Department of Clinical and Chemical Pathology,

Faculty of Medicine,

Alexandria University.

Jes Lu

Prof. Dr. Samir Helmy Assaad

Prof. of Internal Medicine

Department of Internal Medicine

Faculty of Medicine,

Alexandria University.

سرمرمر

Dr. Ola Atef Sharaki

Assist. prof. of Clinical and Chemical Pathology

Department of Clinical and Chemical Pathology,

Faculty of Medicine,

Alexandria University.

ACKNOWLEGEMENT

Before all and above all thanks to GOD

No words can express my thanks and gratitude to Prof. Dr. Malak Mahmoud Abd El-Hay, for her supervision, guidance and useful advice as well as her kind encouragement and reivision of the work. I thank her for suggesting the point of this research, for all the time assistance, valuable knowledge and sincere advice she willingly offered.

I wish to express my deepest gratitude to my eminent Prof. Dr. Samir Helmy Assaad, for his meticulous supervision and revision of the whole text. I feel greatly indebted for his kind advice, constant help throughout every step of this work.

I sincerely thank Dr. Ola Atef Sharaki, for her encouragement, cooperation, excellent guidance, continuous support and advice.

Last but not least, I thank all those who have given me a hand to accomplish this work.

CONTENTS

Chapter	Page
Introduction	1
Systemic hypertension	
 Essential hypertension 	6
 Factors influencing the occurrence of essential hypertension 	6
 Pathophysiology of hypertension 	13
 Metabolic syndrome 	20
 Clinical picture of essential hypertension 	22
 Comlications of essential hypertension 	23
· Prognosis	23
 Role of the clinical laboratory in essential hypertension 	25
 Treatment of essential hypertension 	27
 Renin-angiotensin-aldosterone system 	28
· Renin	30
 Angiotensin 	34
 Aldosterone 	37
• Obesity	40
• Leptin	44
· Insulin	58
Aim of the work	61
Subjects	62
Methods	64
Results	77
Discussion	109
Summary	131
Conclusions	
Recommendations	
References	138
Protocol	
Arabic summary	

LIST OF TABLES

Table	Name		Page
I	Prevalence of hypertension in Egypt	2	
II	Definitions and Classification of blood pressure levels	4	
III	Amino acid compostion of angiotensin peptides	34	
IV	Range, mean and standard deviation of age in years in the studied groups	78	
V	History data of subjects in the three groups	79	
VI	Number of smokers and degreee of smoking in the three groups	80	
VII	Mean and standard deviation of BMI in the six subgroups	81	
VIII	Mean and standard deviation of SBP and DBP	83	
IX	Mean and standard deviation of the routine biochemical data in		
	the six subgroups	84	
X	Individual data of PRA, leptin, FI and PPI in the three grops	85	
XI	Range, mean and standard deviation of PRA in the three groups	88	
XII	PRA according to obesity	89	
XIII	PRA according to smoking	89	
XIV	PRA according to diabetes	90	
XV	Range, mean and standard deviation of Leptin in the three		
	groups	92	
XVI	Leptin according to obesity	93	
XVII	Leptin according to smoking	93	
XVIII	Leptin according to diabetes	94	
XIX	Range, mean and SD of fasting insulin level in the three groups	96	
XX	FI according to obesity	97	
IXX	FI according to smoking	97	
XXII	FI according to diabetes	98	
XXIII	Range, mean and SD of post-prandial insulin level in the three		
	groups	100	
XXIV	PPI according to obesity	101	
XXV	PPI according to smoking	101	
XXVI	PPI according to presence or absence of diabetes	102	
XXVII	General linear model in group I	104	
XXVIII	General linear model in group II	105	
XXIX	General linear model in group III	106	
XXX	Correlation in group I	107	
XXXI	Correlation in group II	107	
XXXII	Correlation in group III	107	

LIST OF FIGURES

Figure	Name	Page
1	Leptin standard cuve	69
2	PRA standard curve	72
3	Insulin standard curve	75
4	Median, quartiles and extremes of age in the three groups	78
5	Number of smokers in the three groups	80
6	Median, quartiles and extremes of BMI in the six subgroups	81
7	Median, quartiles and extremes of SBP in the 6 subgroups	83
8	Median, quartiels and extremes of DBP in the 6 subgroups	84
9	Median, quartiles and extremes of PRA in the three groups	90
10	Median, quartiles and extremes of Leptin in the three groups	94
11	Median, quartiles and extremes of fasting insulin in the three	
	groups	98
12	Median, quartiles and extremes of PPI in the three groups	102
13	A scatter diagram between FI and PPI in group II	108
14	A scatter diagram between FI and PPI in group III	108
15	A scatter diagram between PRA and serum leptin in group III	108

LIST OF ABBREVIATIONS

Abb. Meaning

%B/T Percent of bound over total

μCi Micro-Curie μg Microgram μL Microliter

Radioactive iodine with molecular weight 125

ACTH Adrenocorticotrophic hormone

ANOVA Analysis of variance test
AT Angiotensin receptor
BAT Brown adipose tissue
BMI Body mass index

cAMP Cyclic adenine monophosphate cGMP Cyclic guanosine monophosphate

CHD Coronary heart disease
CPM Count per minute
DBP Diastolic blood pressure

dL Deciliter

DNA Deoxyribonucleic acid EC Enzyme classification

EDTA Ethylene diamine tetra-acetic acid ELISA Enzyme linked immunosorbant assay

FI Fasting insulin

HDL High density lipoprotein

hr Hour

IGF-1 Insulin-like growth factor-1

IgG Immunoglobulin G

IGT Impaired glucoes tolerance IRMA Immunoradiometric assay

ISH International society of hypertension

JAK Janus kinase

JNC VI Sixth Joint National committee on Hypertension

kb Kilobase
kBq Kilo-Bequerell
kg Kilogram
L Liter

LDL Low density lipoprotein

m Meter ml Milliliter

mRNA Messenger ribonucleic acid

MW Molecular weight

ng Nanogram ng Nanogram nmol Nanomol

	•	•
- 14	h	ь
71	u	IJ.

Meaning

Ob-Rb Full-length leptin receptor pmmol Picomol PMSF Phenylmethlysulfonylfluride PPI Post-prandial insulin PRA Plasma renin activity RAAS Renin angiotensin aldosterone system RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation WHO World health organisation	Ob-Ra	Truncated isoform of leptin receptor
PMSF Phenylmethlysulfonylfluride PPI Post-prandial insulin PRA Plasma renin activity RAAS Renin angiotensin aldosterone system RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	Ob-Rb	Full-length leptin receptor
PPI Post-prandial insulin PRA Plasma renin activity RAAS Renin angiotensin aldosterone system RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	pmmol	Picomol
PRA Plasma renin activity RAAS Renin angiotensin aldosterone system RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	PMSF	Phenylmethlysulfonylfluride
RAAS Renin angiotensin aldosterone system RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	PPI	Post-prandial insulin
RAS Renin angiotensin system RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	PRA	Plasma renin activity
RIA Radioimmunoassay RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	RAAS	Renin angiotensin aldosterone system
RNA Ribonucleic acid SBP Systolic blood pressure SD Standard deviation	RAS	Renin angiotensin system
SBP Systolic blood pressure SD Standard deviation	RIA	Radioimmunoassay
SD Standard deviation	RNA	Ribonucleic acid
	SBP	Systolic blood pressure
WHO World health organisation	SD	Standard deviation
	WHO	World health organisation

INTRODUCTION

INTRODUCTION

SYSTEMIC HYPERTENSION

The second half of the twentieth century has seen a progressive decrease in cardiovascular mortality in North America, Western Europe, Japan and Australasia. (1) At the same time, the control of hypertension in these regions has improved considerably.

The Health Examination Surveys in the USA have demonstrated that whereas 10% of hypertensive subjects had their blood pressure lowered to below 140/90 mmHg in 1976-80, the proportion had risen to 27% by 1988-91.⁽²⁾ On the other hand it is important to note that this leaves over 70% of hypertensive subjects with imperfect control (or no treatment at all), as has been reported in many other countries.^(3,4)

More worrying is the rapid development of the "second wave" epidemic of cardiovascular disease that is now flowing through developing countries and the former socialist republics. It is evident that death and disability from coronary heart disease (CHD) and cerebrovascular disease are increasing so rapidly in these parts of the world that they will rank No. 1 and No. 4 respectively as causes of the global burden of disease by the year 2020. (5)

Given the central role of elevated blood pressure in the pathogenesis of both CHD and stroke, it is clear that one of the biggest challenges facing