الخلايا الجذعية: إستراتيجية جديدة لعلاج السكتة الدماغية

رسالة توطئة للحصول علي درجة الماجستير في التشريح

مقدمة من

الطبيب / إنچى محمد عادل خليفة بكالوريوس الطب والجراحة

تحت إشراف

الأستاذ الدكتور /فاطمة ابراهيم الرخاوى أستاذ التشريح

كلية الطب - جامعة عين شمس

الأستاذ الدكتـور/ كـوثــر أحمـــد حافــظ أستاذ التشريح

كلية الطب - جامعة عين شمس

الأستاذ مساعد دكتور/ عزة كمال أبو حسين أستاذ مساعد التشريح كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

الملخص العربي

تلعب الأوعية الدموية دورا حاسما في الحفاظ على التروية الدماغية لتلبية الاحتياجات الحيوية لوظائف المخ حيث تشكل الاضطرابات في المخ فئة كبيرة من الأمراض التي تؤثر على الجهاز العصبي المركزي. الفهم المفصل لتشريح الأوعية الدموية أمر ضروري لنجاح التشخيص والعلاج.

يعتبر النظام السباتي هو المسؤول عن الدورة الأمامية للمخ في حين أن النظام الفقرى - القاعدي مسئول عن الدورة الخلفية للمخ.

تشكل الشرايين السباتية الداخلية مع الشريان القاعدي دائرة ويليس و التى تتيح التواصل بين جميع الأوعية الدموية الرئيسية.

يوزع دم الشرايين الدماغية عبر الشرايين القشرية الموجود على سطح المخ حيث وجود وصلات غنية ،و الشرايين الثاقبة التي تنبثق مباشرة من جذع الأوعية الدماغية الرئيسية دون إقامة وصلات مع بعضها البعض.

يوجد اختلاف تشريحي كبير في دائرة ويليس. فمن المهم أن نفهم هذه المتغيرات الطبيعية ، نسبة انتشارها ، وخصوصا فيما يتعلق بخطر تمدد الأوعية الدموية. وجود متغيرات طبيعية مثل ازدواج الاوعية يلعب دورا حاسما في تشخيص ومعالجة السكتة الدماغية الحادة.

السكتة الدماغية هي العجز العصبي الناتج عن مشكلة في الأوعية الدموية الخاصة بالمخ و التي تستمر لمدة 24 ساعة أوتنتهي بالوفاة في غضون 24 ساعة. و تعد حاليا السبب الرئيسي الثاني للوفاة في العالم الغربي ، بعد أمراض القلب و قبل السرطان ، وتتسبب في 10 ٪ من الوفيات في جميع أنحاء العالم.

تزداد حالات الاصابة بالسكتة الدماغية بداية من سن 30 ، و تختلف المسببات حسب العمر. و يزداد خطر تعرض الشخص للموت مع التقدم في العمر. والرجال أكثر عرضة للسكتات الدماغية من النساء بنسبة 25% ، ولكن 60 ٪ من الوفيات الناجمة عن السكتة الدماغية تحدث في النساء.

تنقسم السكتات الدماغية إلى نوعان : الإقفارية والنزفية. تحدث السكتات الإقفارية بسبب انقطاع تيار الدم ، أما السكتات الدماغية النزفية فتحدث نتيجة تمزق في الأوعية الدموية الطبيعية أو غير الطبيعية (مثل تمدد الأوعية الدموية). وتمثل السكتات الإقفارية 87 ٪ من السكتات الدماغية.

يهدف علاج السكتة الدماغية إلى إزالة الجلطة إما عن طريق الإذابة أو عن طريق الإذابة أو عن طريق إزالتها ميكانيكيا. وتستخدم القسطرة والدعامات لعلاج السكتة الدماغية النزفية يتطلب في بعض الأحيان تدخلا جراحيا.

ليس هناك علاج فعال متاح حاليا يضمن تحسن المريض بعد السكتة الدماغية لذلك كانت الخلايا الجذعية مصدرا محتملا لخلايا جديدة تحل محل تلك التي فقدت بسبب الاصابة في الجهاز العصبي المركزي .

وهناك أنواع عديدة من الخلايا الجذعية التي يمكن استخدامها مثل الخلايا المشتقة من المخ البشري و الخلايا الجذعية الجنينية العصبية المأخوذة من المخ النامى، أيضاً الخلايا الجذعية المستمدة من نظم غير عصبية والتي يمكن تحويلها إلى خلايا عصبية ومن أمثلة ذلك الخلايا الجذعية الجنينية ،الخلايا الجذعية الدموية المشتقة من نخاع العظام أو الأنسجة الدهنية ، و حديثًا الخلايا الجذعية المستمدة من المشيمة و من الحبل السرى و غير ها.

أثبتت الدراسات انه عند زراعة الخلايا الجذعية فانها يمكنها البقاء على قيد الحياة و تصحيح الموصلات العصبية ، مع عمل وصلات جديدة، واستعادة القدرات الحركية و المعرفية للمخ.

ويمكن زرع الخلايا الجذعية مباشرة في أو حول المنطقة المتضررة مع قدرتها على التحول إلى تلك الخلايا التي قد ماتت و ربما تكون الاستراتيجية الأمثل هي الجمع بين زرع الخلايا قريباً من المنطقة المتضررة مع تحفيز الخلايا العصبية الذاتية نتيجة قدرتها على التحول للخلايا التي ماتت. وبما أن نقص الدم يتسبب في فقدان كثير من الخلايا العصبية التي تشكلت حديثا فان إنشاء أو عية دموية متخصصة وتنشيط الأو عية الدموية بعد السكتة الدماغية مهم لبقاء الخلايا العصبية الجديدة يعتمد

نجاح زرع الخلايا الجذعية العصبية على عوامل كثيرة منها شكل السكتة الدماغية من حيث (الموقع ، حجم المنطقة المتأثرة ، ودرجة الاحتشاء) ، بقاء الخلايا على قيد الحياة في مرحلة ما قبل وبعد زرع والتقنية الجراحية المستخدمة.

لهذه الأسباب، فإن احتمالات إصلاح الخلايا العصبية، وذلك باستخدام زرع الخلايا يبدو واعدا وفريدا لاصلاح الأصابة واستعادة الوظائف.

ولهذا فان الهدف من هذا العمل هو استعراض اسباب السكتة الدماغية والعلاجات المتاحة. وأيضا معرفة أنواع الخلايا الجذعية ودورها المنتظر في علاج السكتة الدماغية.

Stem cells therapy: A new strategy for treatment of stroke

Essay
Submitted For Partial Fulfillment of Master Degree in Anatomy

By

Engy Mohamed Adel Khalifa M.B. B.Ch

Under Supervision of:

Prof. Dr. Fatma Ibrahim El Rakhawy

Professor of Anatomy
Faculty of Medicine, Ain Shams University

Prof. Dr. Kawther Ahmed Hafez

Professor of Anatomy
Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Azza kamal Abou-Hussien

Assistant Professor of Anatomy Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2011

Contents

List of Abbreviations	I
Introduction	1
Aim of the Work	3
Chapter I: Arterial Blood Supply of the Brain	4
Chapter II: Stroke	40
Chapter III: Successful Cell Transplantation	67
Summary and Conclusion	106
References	112
Arabic Summary	1

List of Abbreviations

A Anterior cerebral artery segment.

ACA Anterior cerebral artery.

AChA Anterior choroidal artery.

AcoA Anterior communicating artery.AICA Anterior inferior cerebellar artery.

AINS Acute ischemic non cardioembolic stroke.

AMF Anterior medial frontal artery.

BDNF Brain-derived neurotrophic factor.

BI Barthel index.

BLI Bioluminescence imaging.bmMSCs bone marrow-derived MSCs.CAST Chinese Acute Stroke Trial.

CE Cardio embolic stroke.CMA Callosomarginal artery.CNS Central nervous system.

CT Computerized tomography.

CW Circle of Willis.

DFCs Dental follicle cells.**DPSCs** Dental pulp stem cells.

DSCs Dental stem cells.

EPCs Endothelial progenitor cells

ESCs Embryonic stem cells.

FDA Food and Drug Administration.

FGF-2 Fibroblast growth factor-2.

FPA Frontopolar artery.

G-CSF Granulocyte-colony stimulating factor.

G-CSFR G-CSF-receptor.

GOS Glasgow outcome scale.

GRID Gadolinium-RhodamIne Dextran.

HGF Hepatocyte growth factorsHLA Human leukocyte antigen.

hNT Post-mitotic neurons.

HSCs Hematopoietic stem cells

HUCBC Human umbilical cord blood cells

ICA Internal carotid artery.

ICH Intracerebral hemorrhage.

IMF Intermediate medial frontal artery

iPS Induced pluripotent stem.

LAA Large-artery atherosclerosis.

LACI Lacunar infarction.LBS Layton Bioscience.

LLAs Lateral lenticulostriate arteries.

LS Lacunar stroke.

LVD Large vessels diseases.

M Middle cerebral artery segment.

MCA Middle cerebral artery.

MCAo MCA occlusion

MenSCs Menstrual stem cells.

MRA Magnetic resonance angiography

MRI Magnetic resonance imaging.

mRS modified Rankin scale.

MSCs Mesenchymal stem cells.

NIH National institute of health.

NIHSS National Institutes of Health stroke scale.

NINDS National institute of neurological disorders and

stroke.

NPCs Neural progenitor cells.

NSC Neural stem cells.
NT2N N-Tera-2 neuron.

OCSP The Oxfordshire Community Stroke Project.

Oct4 Octamer-binding transcription factor 4.

ODE Other Defined Etiologies.

P Posterior cerebral artery segment.

P2A P2 anterior part.P2p P2 posterior part.

PACI Partial anterior circulation infarction.

PCA Posterior cerebral artery.PChA Posterior choroidal artery.

PcoA Posterior communicating artery.PET Positron emission tomography.PICA Posterior inferior cerebellar artery.

PMF Posterior medial frontal artery.

pMSCs Placental MSCs.

POCI Posterior circulation infarction.

SAH Subarachnoid hemorrhage.SCA Superior cerebellar artery.SDF-1 Stromal cell-derived factor-1.

SIS Stroke impact scale.

Sox2 SRY (sex determining region Y)-box2.

SPECT Single photon emission computed tomography.

SPIO Superparamagnetic iron oxide.

SVD Small vessel diseases.
SVZ Subventricular zone

TACI Total anterior circulation infarction.

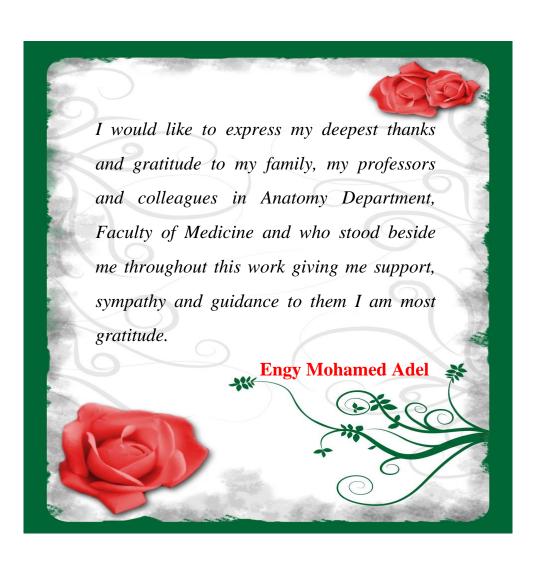
TIA Transient ischaemic attack.

TOAST Trial of Org-10172 Acute Stroke Treatment.

tPA tissue plasminogen activator.

VEGF Vascular endothelial growth factor.

VEGFR2 VEGF receptor 2.



First of all, I would like to thank Allah, for allowing me to perform this study.

My profound thanks and deep appreciation to Prof. Dr. Fatma Ibrahim El Rakhawy, Professor of Anatomy, Faculty of Medicine, Ain Shams University for her endless patience, valuable remarks, guidance and support. This work could not have reached its goal without her help.

I would like to express my profound gratefulness and sincere appreciation to **Prof. Dr. Kawthar Ahmed Hafez,**Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her support, valuable remarks and suggestions that helped me starting from the beginning till the final production of this work.

I wish to express my thanks and sincere appreciation to Dr. Azza Kamal Abou Hussein, Professor of Anatomy, Faculty of Medicine, Ain Shams University, for her supervision, patience and encouragement.

Aim of the Work

Stem cell transplantation offers an exciting new therapeutic avenue for stroke not only to prevent damage, but also to actually repair the injured brain. Cell transplantation has shown much promise in experimental models of stroke. So, the aim of this work is to review the development of stem cells therapy toward clinical application in stroke.

Introduction

Stroke is a medical emergency causing permanent neurological damage, complications, and death. It is the leading cause of adult disability. It is the second cause of death worldwide and may soon become the leading cause of death worldwide (Feigin, 2005).

Stroke results from disturbance in the blood supply of the brain and leads to rapid loss of brain functions. This due to decrease of glucose and oxygen supply caused by thrombosis or arterial embolism or due to hemorrhage. 87% of strokes are due to ischemia, the remainders are due to hemorrhage (**Sims and Muyderman, 2009**).

Risk factors for stroke include; hypertension, previous stroke or transient ischemic attack, diabetes, high cholesterol, smoking and atrial fibrillation (**Donnan et al., 2008**).

Advanced age is one of the most significant stroke risk factors. 95% of strokes occur in people age 45 and older, and two-thirds of strokes occur in those over the age of 65. Family members may have a genetic tendency for stroke or share a lifestyle that contributes to stroke. Men are 25% more likely to suffer strokes than women, yet 60% of deaths from stroke occur in women (**NINDS**, 1999).

Definitive therapy in ischemic strokes is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly the blood flow is restored to the brain, the fewer brain cells die. Other medical therapies are aimed at minimizing clot enlargement or preventing new clots from forming. Treatment with aspirin may be given to prevent platelets from aggregating. Patients with intracerebral hemorrhage require neurosurgical evaluation to detect and treat the cause of bleeding, although many may not need surgery (Saver, 2006).

Once stroke-induced cell damage occurred, little can be done to improve functional outcome, except for rehabilitation therapy and pharmacological management of co-morbidities (Adams et al., 2007). In an infarcted area, the ischemic core may not respond to any pharmacological or rehabilitative intervention. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury (Padma, 2009).

The future of brain repair for stroke is likely to require some form of combination therapy designed to replace the lost cells and supporting structure, attract new blood supply, support and enhance intrinsic repair and plasticity mechanisms (**Roitberg**, **2004**). Neural stem cells (NSC) transplantation strategies might have therapeutic promise in treating stroke (**Tran et al., 2010**).

An increasing number of studies provide evidence that hematopoietic stem cells, after stimulation of endogenous stem cell pools or exogenous application (transplantation), improve the functional outcome following ischemic brain lesions. Various underlying mechanisms such as transdifferentiation into neural lineages, neuroprotection through trophic support, and cell fusion have been described (**Haas et al., 2005**).

The optimum strategy would probably be to combine the transplantation of NSC close to the damaged area with stimulation of neurogenesis from endogenous NSC (Arvidsson et al., 2002).

Many factors may be critical for transplantation success: the localization and extension of the infarcted area, the time window (acute or chronic phase); the source of stem cells whether embryonic, fetal or adult and the route of administration (local or systemic) (Wechsler et al., 2009).

For these reasons, the prospects of repairing the neuron system, using cell transplantation seems promising and may offer a unique approach for brain repair and restoration of function.

Arterial Blood Supply of the Brain

The brain is divided into three gross anatomic segments: the cerebrum, cerebellum, and brain stem. The cerebrum consists of the paired cerebral hemispheres and the diencephalon, which includes the thalamus and hypothalamus. The brain stem is made up of the midbrain, pons and medulla oblongata. The cerebellum is situated posterior to the brain stem. Within the brain there are four cavities known as ventricles: the two lateral ventricles in the cerebral hemispheres, the third ventricle between the two thalami, and the fourth ventricles are filled with a clear, colorless liquid called cerebrospinal fluid (Filley, 2002).

The brain receives its arterial blood supply via two major routes, the internal carotid arteries (ICA) and the vertebral arteries. The latter form the unpaired basilar artery at the junction of the medulla and the pons (Farkas and Luiten, 2001).

The carotid system is responsible for the anterior circulation of the brain while the vertebro-basilar system forms the posterior cerebral circulation. Obviously, the anterior and posterior circuits are not independent of each other. They are interconnected by communicating arteries, the anterior communicating artery (AcoA) and the posterior communicating arteries (PcoA) and these create the circle of Willis (CW) (Fig. 1). CW provides potential shortcuts between the lateral as well as the antero-posterior cerebral circulation (Farkas and Luiten, 2001). The configuration of the CW is highly variable, with a complete circle in fewer than 50% of individuals (Brott et al., 2011).

The potential of CW to develop collateral flow in case of impaired afferent supply has been known since 1664 by Sir Thomas Willis (Eastcott, 1994).