

BEHAVIOR OF LIGHTWEIGHT REINFORCED CONCRETE BEAMS WITH OPENINGS IN SHEAR ZONE

By

Eng. Mohamed Ibrahim Mohamed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

BEHAVIOR OF LIGHTWEIGHT REINFORCED CONCRETE BEAMS WITH OPENINGS IN SHEAR ZONE

By

Eng. Mohamed Ibrahim Mohamed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr. Hany Ahmed Abdalla

Ass. Prof. Dr. Nasser Fekri Elshafey

Professor of Concrete structures Faculty of Engineering, Cairo University Assistant Professor of Concrete structures Faculty of Engineering, Cairo University

BEHAVIOR OF LIGHTWEIGHT REINFORCED CONCRETE BEAMS WITH OPENINGS IN SHEAR ZONE

By

Eng. Mohamed Ibrahim Mohamed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the
Examining Committee

Prof. Dr. Hany Ahmed Abdalla
Professor of Concrete Structures, Cairo University

Ass. Prof. Dr. Nasser Fekri Elshafey
Assistant Professor of Concrete Structures, Cairo University

Prof. Dr. Akram Mohamed Torkey
Internal Examiner
Professor of Concrete Structures, Cairo University

Prof. Dr. **Gouda Mohamed Ghanem** External Examiner Professor at El Matareya Engineering Faculty, Helwan University Dean of the Higher Institute of Engineering in El Shorouk

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Mohamed Ibrahim Mohamed Ahmed

Date of Birth: 13/05/1991 **Nationality:** Sudanese

E-mail: mohamed.ahmed91@eng1.cu.edu.eg

Phone: 01094008086

Address: Sudanese Embassy at Cairo

Registration Date:01/10/2015Awarding Date:..../..../2017Degree:Master of ScienceDepartmentStructure Engineering

Supervisors:

Prof. Dr. Hany Ahmed Abdalla Ass. Prof. Dr. Nasser Fekri Elshafey

Examiners:

Prof. Dr. Hany Ahmed Abdalla (Thesis Main Advisor)
Ass.Prof. Dr. Nasser Fekri Elshafey
Prof. Dr. Akram Mohamed Torkey
Prof. Dr. Gouda Mohamed Ghanem
Professor at El Matareya Engineering Faculty, Helwan University

Dean of the Higher Institute of Engineering in El Shorouk

Title of Thesis:

Behavior of Lightweight Reinforced Concrete Beams with openings in Shear Zone

Key Words:

Lightweight concrete; Simply-support beams; Openings; Shear zone; Stiffness.

Summary:

The construction of modern buildings requires many pipes and ducts to accommodate necessary services such as air conditioning, electricity, telephone, and computer network. Presence of openings in reinforced concrete beams enables the installation of these services, minimizes the required floor height, and decreases the construction cost. However, the presence of these openings in reinforced concrete beams affects their structural behavior. Thus, this thesis investigates the behavior of simply supported beams with openings in shear zone subject to two symmetrical-concentrated loads.

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty **ALLAH**, the most Gracious, the most merciful, and peace is on his Prophet, Mohamed.

I wish to express my sincere gratitude and thanks to my supervisor, **Prof. Dr. Hany Ahmed Abdalla**, Professor of Concrete Structures, Faculty of Engineering, Cairo University, for his continuous help, support, suggestions, advice and guidance throughout the research program.

I am indebted with great favor to **Dr. Nasser Fekri Elshafey** for his generous supervision, motivation, continuous hard work, fruitful positive discussions, guidance, and following me up through the study and final preparation of this thesis.

I would also like to express my heartfelt appreciation to my family; my father, my uncle **Salah**, Cultural Councellor at Sudan Embassy, Cairo, my sister, my brothers and my aunt for lots of support.

Finally, I would like to express my gratitude to all those who encouraged me to complete this thesis.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	Ι
TABLE OF CONTENTS	II
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	XII
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Research objectives	2
1.3 Thesis organization	2
CHAPTER 2: LITERATURE REVIEW	3
2.1 Lightweight concrete	3
2.1.1 Classification of lightweight concrete	3
2.1.2 Engineering properties of structural lightweight concrete	4
2.1.2.1 Compressive strength	4
2.1.2.2 Elastic compatibility	4
2.1.2.3 Maximum strength ceiling	4
2.1.2.4 Contact zone	5
2.1.2.5 Tensile strength	5
2.1.2.6 Elastic modulus and poisson's ratio	6
2.1.2.7 Bond strength and development length	6
2.1.2.8 Abrasion resistance	6
2.1.2.9 Shrinkage	7
2.1.2.10 Creep and fatigue	7
2.1.3 Durability characteristics of structural lightweight concrete	7
2.2 Economy of structural lightweight concrete	9
2.3 Lightweight aggregate chracteristics	9

2.3.1 Compressive strength	9
2.3.2 Specific gravity	10
2.3.3 Water absorption	10
2.3.4 Moisture content and bulk density	11
2.3.5 Lightweight aggregate applications in housing	11
2.4 Shear in reinforced concrete members	12
2.4.1 Shear transfer mechanisms	12
2.4.2 Shear capacity of beams	13
2.4.2.1 Shear resistance of beams without shear reinforcement	13
2.4.2.2 Shear resistance of beams with shear reinforcement	14
2.5 Lightweight concrete in shear	14
2.6 Concrete beams with openings	16
2.6.1 Classification of openings	16
2.6.1.1 Beams with small openings	16
2.6.1.2 Beams with large openings	17
2.6.2 Shear behavior of beams with opening	18
2.7 Effect of creating openings in existing beams	20
2.7.1 Cracking and crack widths	21
CHAPTER 3: FINITE ELEMENT MODELING AND VERFICATION	
OF ANSYS MODELS	23
3.1 Introduction	23
3.2 Element types	23
3.2.1 Concrete element model	23
3.2.2 Steel reinforcement	25
3.2.3 Steel plate element model	26
3.3 Real constants	27
3.4 Nonlinear finite element	28
3.5 Material properites	28

3.5.1 Material properties of concrete	28
3.5.2 Material properties for steel plate and reinforcement	33
3.6 Modeling methodology	35
3.6.1 Meshing of the analyzed beams	35
3.6.2 Loads and boundary conditions	37
3.6.3 Nonlinear solution and failure criteria	38
3.6.4 Crushing and crack pattern	38
3.7 Verification of the proposed finite element model	40
3.6.1 Summary	43
CHAPTER 4: PARAMETRIC STUDY	44
4.1 Introduction	44
4.2 Investigated parameters of the analyzed beams	44
4.3 Description of the analyzed beams	44
4.3.1 Analytical study	45
4.3.2 Reinforcement details	49
4.4 Results and discussions	51
4.4.1 Solid beams (beams without openings)	51
4.4.1.1 Load deflection relationship.	51
4.4.1.2 First crack and final crack pattern	53
4.4.1.3 Deflection at failure	55
4.4.2 Beams with opening	56
4.4.2.1 Effect of opening location.	56
4.4.2.1.1 Load deflection relationship	56
4.4.2.1.2 First crack and final crack pattern	58
4.4.2.1.3 Deflection at failure	60
4.4.2.2 Effect of opening length.	62
4.4.2.2.1 Load deflection relationship	62
4.4.2.2.2 First crack and final crack pattern	63

4.4.2.2.3 Deflection at failure	66
4.4.2.3 Effect of opening depth	67
4.4.2.3.1 Load deflection relationship	67
4.4.2.3.2 First crack and final crack pattern	68
4.4.2.3.3 Deflection at failure	71
4.4.2.4 Effect of type of concrete and compressive strength	72
4.4.2.4.1 Load deflection relationship	72
4.4.2.4.2 First crack and final crack pattern	76
4.4.2.4.3 Deflection at failure	83
4.4.2.5 Reinforcement arrangement around opening	86
4.4.2.5.1 Load deflection relationship	86
CHAPTER 5: SUMMARY, CONCLUATIONS, AND	
RECOMMENDATIONS FOR FUTURE RESEARCHES	100
5.1 Summary	100
5.2 Concluations	100
5.3 Recommendations for future researches	101
REFERENCES	102

LIST OF TABLES

Table2.1:	Cracking and service load behaviour	2
Table 3.1(a):	Material properties for normal weight concrete element	30
Table 3.1(b):	Material properties for mixed concrete element	31
Table 3.1(c):	Material properties for lightweight concrete element	32
Table 3.2:	Material properties for steel plate	34
Table 3.3:	Material properties for reinforcement	34
Table 3.4:	Concrete properties which tested by (Magdi Ali, 2016)	4(
Table 3.5:	Comparison between experimental and ANSYS results	43
Table 4.1:	Description of the analyzed beams	47

LIST OF FIGURES

Figure 2.1:	Basic shapes of lightweight concrete	3
Figure 2.2:	Cracks pattern of beam failure in shear	12
Figure 2.3:	Opening shapes	16
Figure 2.4:	A suitable reinforcement scheme for the opening region.	17
Figure 2.5:	Ductile failure of a beam under combined bending and shear	18
Figure 2.6:	Shear failure of a beam without shear reinforcement	19
Figure 2.7:	Reinforcement schemes for beams with openings	20
Figure 2.8:	Shear failure of Beam B4 at the throat section	20
Figure 2.9:	Cracking patterns of some typical beams	22
Figure 3.1:	SOLID65 element	24
Figure 3.2:	SOLID65 stress output	24
Figure 3.3:	Models of reinforcement elements	26
Figure 3.4:	SOLID185 element	26
Figure 3.5:	Real constant (set 9) for reinforced concrete beam	27
Figure 3.6:	Elastic-Plastic behaviour of concrete in compression	29
Figure 3.7:	Uniaxial stress-strain curve for concrete model	33
Figure 3.8:	Stress-strain curve for steel reinforcement	33
Figure 3.9:	Element connectivity: (a) Concrete solid and reinforcement (b) Concrete solid and steel solid	25
Figure 3.10:	elements	35 36
Figure 3.11:	Meshing of a typical beam with opening	36
Figure 3.12:	Loading and boundary conditions of a typical simply	
Figure 3.13:	supported beam with roller-hinged ends	37
Figure 3.14:	Typical cracking signs occurring in finite element model. (a) Flexural cracks, (b) Compressive cracks and	38
Figure 3.15:	(c) Diagonal tensile cracks	39 41
Figure 3.16:	Comparison between experimental and ANSYS results of lightweight concrete.	41

Figure 3.17:	Comparison between experimental and ANSYS results of mixed concrete.	42
Figure 3.18:	Comparison between experimental and ANSYS results of	4,
U	normal weight concrete	42
Figure 4.1:	Geometry and reinforcement details for solid beams (BL0, BN0 and BM0)	49
Figure 4.2:	Geometry and reinforcement details for beams (BL11,	
	BL15, BL19, BN1, BN5, BN9, BM1, BM5 and BM9)	49
Figure 4.3:	Geometry and reinforcement details for beams (BL12, BL16, BL20, BN2, BN6, BN10, BM2, BM6 and BM10)	50
Figure 4.4:	Geometry and reinforcement details for beams (BL1,	
	BL2, BL3, BL4, BL5, BL6, BL7, BL8, BL9, BL10,	
	BL13, BL17, BL21, BN3, BN7, BN11, BM3, BM7 and	
	BM11)	5(
Figure 4.5:	Geometry and reinforcement details for beams (BL14,	
	BL18, BL22, BN4, BN8, BN12, BM4, BM8 and	
	BM12)	50
Figure 4.6 (a):	Effect of concrete type on beam deflection (solid beams)	52
Figure 4.6 (b):	Effect of concrete type on ultimate load (solid beams)	52
Figure 4.7:	First crack pattern of beam with variable concrete type	
	(a) Normal weight, (b) Mixed, and (c) Lightweight	5.
Figure 4.8:	Final crack pattern of beam with variable concrete type	
	(a) Normal weight, (b) Mixed, and (c) Lightweight	54
Figure 4.9:	Deflected shape of beam with variable concrete type	
	(a) Normal weight, (b) Mixed, and (c) Lightweight	5:
Figure 4.10 (a):	Effect of opening location (X/d) on beam deflection	
	(Lightweight concrete)	5′
Figure 4.10 (b):	Effect of opening location (X/d) on ultimate load	J
	(Lightweight concrete)	5′
Figure 4.11:	First crack pattern of beams with variable opening	J
C	location (a) $X/d=0$, (b) $X/d=0.50$, (c) $X/d=0.75$, (d)	
	X/d=1.0, (e) X/d=1.25	58
Figure 4.12:	Final crack pattern of beams with variable opening	50
8	location (a) X/d=0, (b) X/d=0.50, (c) X/d=0.75, (d)	
	X/d=1.0, (e) X/d=1.25	<i>5</i> (
Figure 4.13:	Deflection shape of beam with variable opening	59
116010 7.13.	location (a) $X/d=0$, (b) $X/d=0.50$, (c) $X/d=0.75$, (d)	
	X/d=1.0, (e) X/d=1.25	_
Figure 4.14 (a):	Effect of opening length (W/d) on beam deflection	6
11guic 4.14 (a).	(Lightweight concrete)	e i
Figure 4.14 (b):	Effect of opening length (W/d) on ultimate load	62
1 15010 7.17 (0).	(Lightweight concrete)	6'
	\—-p	U.

Figure 4.15:	First crack pattern of beams with variable opening length (a) W/d=0, (b) W/d =0.42, (c) W/d =0.65, (d) W/d =0.85, (e) W/d =1.30	64
Figure 4.16:	Final crack pattern of beams with variable opening length (a) $W/d=0$, (b) $W/d=0.42$, (c) $W/d=0.65$, (d) $W/d=0.85$, (e) $W/d=1.30$	65
Figure 4.17:	Deflection shape of beam with variable opening length (a) $W/d=0$, (b) $W/d=0.42$, (c) $W/d=0.65$, (d) $W/d=0.85$, (e) $W/d=1.30$	66
Figure 4.18 (a):	Effect of opening depth (h/d) on beam deflection (Lightweight concrete)	67
Figure 4.18 (b):	Effect of opening depth (h/d) on ultimate load (Lightweight concrete)	68
Figure 4.19:	First crack pattern of beams with variable opening depth (a) $h/d=0$, (b) $h/d=0.28$, (c) $h/d=0.45$, (d) $h/d=0.56$, (e) $h/d=0.67$	69
Figure 4.20:	Final crack pattern of beams with variable opening depth (a) $h/d=0$, (b) $h/d=0.28$, (c) $h/d=0.45$, (d) $h/d=0.56$, (e) $h/d=0.67$	70
Figure 4.21:	Deflected shape of beams with variable opening depth (a) h/d=0, (b) h/d =0.28, (c) h/d =0.45, (d) h/d =0.56, (e) h/d =0.67	70
Figure 4.22 (a):	Effect of concrete type on beam deflection (X/d= 1.0, W/d=1.30, h/d=0.45)	72
Figure 4.22 (b):	Effect of concrete type on ultimate load (X/d= 1.0, W/d=1.30, h/d=0.45)	73
Figure 4.23 (a):	Effect concrete type on beam deflection (X/d= 1.0, W/d=0.85, h/d=0.67)	74
Figure 4.23 (b):	Effect of concrete type on ultimate load (X/d= 1.0, W/d=0.85, h/d=0.67)	74
Figure 4.24 (a):	Effect concrete type on beam deflection (X/d= 0.50, W/d=0.85, h/d=0.45)	75
Figure 4.24 (b):	Effect of concrete type on ultimate load $(X/d=0.50, W/d=0.85, h/d=0.45)$	76
Figure 4.25:	First crack pattern of beams with variable concrete types (a) N.W.C without opening, (b) N.W.C with opening, (c) M.C with opening, and (d) L.W.C with opening, (X/d= 1.0, W/d=1.30, h/d=0.45)	77
Figure 4.26:	Final crack pattern of beams with variable concrete types (a) N.W.C without opening, (b) N.W.C with opening, (c) M.C with opening, and (d) L.W.C with opening, (X/d= 1.0,	
	W/d=1.30, h/d=0.45)	78

Figure 4.27:	First crack pattern of beams with variable concrete types	
	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=1.0,$	
	W/d=0.85, h/d=0.67)	79
Figure 4.28:	Final crack pattern of beams with variable concrete types	
	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=1.0,$	
	W/d=0.85, h/d=0.67)	80
Figure 4.29:	First crack pattern of beams with variable concrete types	
	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=0.50,$	
	W/d=0.85, h/d=0.45)	81
Figure 4.30:	First crack pattern of beams with variable concrete types	
C	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=0.50,$	
	W/d=0.85, h/d=0.45)	82
Figure 4.31:	Deflected shape of beams with variable concrete types	
C	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=1.0,$	
	W/d=1.30, h/d=0.45)	83
Figure 4.32:	Deflected shape of beams with variable concrete types	0.5
C	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=1.0,$	
	W/d=0.85, h/d=0.67)	84
Figure 4.33:	Deflected shape of beams with variable concrete types	0.
C	(a) N.W.C without opening, (b) N.W.C with opening, (c)	
	M.C with opening, and (d) L.W.C with opening, $(X/d=0.5,$	
	W/d=1.35, h/d=0.45)	85
Figure 4.34 (a):	Effect of reinforcement around opening on beam deflection	0.5
	(X/d=1.0, W/d=1.30, h/d=0.45, Lightweight concrete)	86
Figure 4.34 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d=1.0, W/d=1.30, h/d=0.45, Lightweight concrete)	87
Figure 4.35 (a):	Effect of reinforcement around opening on beam deflection	07
	(X/d= 1.0, W/d=0.85, h/d=0.67, Lightweight concrete)	88
Figure 4.35 (b):	Effect of reinforcement around opening on ultimate load	00
	(X/d= 1.0, W/d=0.85, h/d=0.67, Lightweight concrete)	88
Figure 4.36 (a):	Effect of reinforcement around opening on beam deflection	00
8	(X/d=0.50, W/d=0.85, h/d=0.45, Lightweight concrete)	89
Figure 4.36 (b):	Effect of reinforcement around opening on ultimate load	0)
118010 (0).	(X/d=0.50, W/d=0.85, h/d=0.45, Lightweight concrete)	90
Figure 4.37 (a):	Effect of reinforcement around opening on beam deflection	70
<i>6</i>	(X/d=1.0, W/d=1.30, h/d=0.45, Mixed concrete)	91
Figure 4.37 (b):	Effect of reinforcement around opening on ultimate load	/1
	(X/d=1.0, W/d=1.30, h/d=0.45, Mixed concrete)	91
		<i>,</i> ,

Figure 4.38(a):	Effect of reinforcement around opening on beam deflection	
	(X/d= 1.0, W/d=0.85, h/d=0.67, Mixed concrete)	92
Figure 4.38 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d= 1.0, W/d=0.85, h/d=0.67, Mixed concrete)	93
Figure 4.39 (a):	Effect of reinforcement around opening on beam deflection	
	(X/d= 0.50, W/d=0.85, h/d=0.45, Mixed concrete)	94
Figure 4.39 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d= 0.50, W/d=0.85, h/d=0.45, Mixed concrete)	94
Figure 4.40 (a):	Effect of reinforcement around opening on beam deflection	
	(X/d= 1.0, W/d=1.30, h/d=0.45, Normal weight concrete)	95
Figure 4.40 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d= 1.0, W/d=1.30, h/d=0.45, Normal weight concrete)	96
Figure 4.41 (a):	Effect of reinforcement around opening on beam deflection	
	(X/d= 1.0, W/d=0.85, h/d=0.67, Normal weight concrete)	97
Figure 4.41 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d= 1.0, W/d=0.85, h/d=0.67, Normal weight concrete)	97
Figure 4.42 (a):	Effect of reinforcement around opening on beam deflection	
	(X/d= 0.50, W/d=0.85, h/d=0.45, Normal weight concrete)	98
Figure 4.42 (b):	Effect of reinforcement around opening on ultimate load	
	(X/d=0.50, W/d=0.85, h/d=0.45, Normal weight concrete)	99