Vascular Endothelial Growth Factor In Neonates With Intrauterine Growth Restriction

Thesis

Submitted for the partial fulfillment of the Master degree in Pediatrics

By

Khaled M. Ibrahim Faris Brike M.B.,B.Ch.

Supervised by Prof . Mohammed Sami EL-Shemi

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Prof. Amani Osman Mahmoud

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Dr. Rania Ahmed Abo-Shady

Lecturer of Clinical Pathology
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2011

عامل نمو الخلايا البطانية للأوعية الدموية في حالات قصور النمو الجنيني عند حديثي الولادة

رسالة مقدمة من الطبيب/ خالد محمد إبراهيم فارس بريك بكالوريوس الطب والجراحة كلية الطب - جامعة عين شمس

توطئة للحصول علي درجة الماجستير في طب الأطفال

تحت إشراف

أ_د/ محمد سامي الشيمي أستاذ طب الأطفال كلية الطب – جامعة عين شمس

أ_د/ أماني عثمان محمود أستاذ طب الأطفال كلية الطب - جامعة عين شمس

د/ رانيه أحمد أبو شادي مدرس الباثولوجيا الإكلينيكية كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

List of Abbreviations

ABG : Arterial blood gas

AC : Abdominal circumference

AFI : Amniotic fluid index

AGA : Appropriate for gestational age.

AUC : Area under curve.

CAD : Coronary artery diseaseCBC : Complete blood count.CI : Confidence intervalCMV : Cytomegalo virus

CNS : Central nervous systemCRP : C-Reactive protein.CVS : Cardiovascular system

DV : Ductus Venosus EC : Endothelial cells

EFW: Estimated fetal weight FGR: Fetal growth restriction

Hb : Hemoglobin.

HC: Head circumference.

Hct: Hematocrit.

HF : Hypotensive factor

HIF : Hypoxia inducible factorHSC : Hematopoietic stem cells

IUGR : Intrauterine growth restriction

IVC : Inferior vena cavaLBW : Low birth weight.LMP : Last menstrual period

LMP : Last menstrual period LSECs : Liver sinusoidal endothelial cells

MCA : Middle cerebral artery

MRI : Magnetic resonant imaging
 mRNA : Messenger ribonucleic acid
 MVP : Maximum vertical pocket
 NICU : Neonatal intensive care unit.
 NPV : Negative predictive value.

NRP: Neuroplin

List of Abbreviations (Cont.)

PAD : Periphral artery disease

PET : Partial exchange transfusion

PI : Pulsatility Index

PLGF : Placental growth factor

PLT: Platelet.

PO₂ : Oxygen pressure

PPV : Positive predictive value.
PSV : Peak systolic velocity

PT: Preterm.

RI : Resistance index

ROP : Retinopathy of prematurity SCG : Superior cervical ganglia

SD : Standard deviation.

SGA : Small for gestational age

svVEGF: Snake venom vascular endothelial growth factor

U/S : Ultrasound.

UA : Umbilical artery

VEGF : Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor receptor

VPF : Vascular permeability factor

WBCs : White blood cells.

List of tables

Table	Subject	Page
1	Growth factors and cytokines affecting VEGF expression	9
2	Comparison between types of IUGR	21
3	Characteristic of the groups	46
4	Comparison between cases and control according to Gestational age by US, B. Score, Weight (Kg), Length (Cm), HC, Apgar at 1 min, and at 5 min	47
5	Comparison between cases and control according to VEGF, PLT, WBC, Lymphocytes, Monocytes, Gran., Hb and Hct	47
6	Comparison between cases and control according to sex, risk factors and CRP	54
7	Comparison between male and female cases according to Gestational age by US, B. Score, Weight (Kg), Length (Cm), HC, Apgar at 1 min, and at 5 min	57
8	Comparison between male and female cases according to VEGF, PLT, WBC, Lymphocytes, Monocytes, Gran., Hb and Hct	57
9	Comparison between male and female cases according to risk factors and CRP	59
10	Correlation between VEGF and other measured parameters In cases	62
11	Comparison of VEGF according to risk factors and CRP	65

List of Figures

Fig.	Subject	Page
1	Functions of pigment-epithelium-derived factor	18
	(PEDF), vascular endothelial growth factor	
	(VEGF), and other vascular trophic factors in	
	various ocular tissues during angiostasis and	
	angiogenesis	
2	A practical classification for newborn infants by	37
	(weight, length and head circumferences) and	
	gestational age	
3	Neuromuscular Maturity	38
4	Physical Maturity	39
5	Maturity Rating	39
6	Reagent preparation for serum /plasma samples	43
7	Comparison between case and control groups as	49
	regard gestational age	
8	Comparison between case and control groups as	49
	regard body weight	
9	Comparison between case and control groups as	50
	regard body length and head circumference	
10	Comparison between case and control groups as	50
	regard serum VEGF level	
11	Comparison between case and control groups as	51
	regard platelet count	
12	Comparison between case and control groups as	51
	regard total leucocytic count	
13	Comparison between case and control groups as	52
	regard differential leucocytic count	
14	Comparison between case and control groups as	52
	regard hemoglobin level	
15	Comparison between case and control groups as	53
	regard hematocrit value	
16	Comparison between case and control groups as	55
	regard sex	

List of Figures (Cont.)

Fig.	Subject	Page
17	Comparison between case and control groups as regard risk factors for IUGR	55
18	Comparison between case and control groups as regard CRP level	56
19	Comparison between male and female cases as regard VEGF level	58
20	Comparison between male and female cases as regard risk factors for IUGR	60
21	Comparison between male and female cases as regard CRP	60
22	Receiver Operating Characteristic (ROC) curve to define the best cutoff to VEGF to detect IUGR	61
23	Scatter diagram showing the relation between VEGF and Hb	63
24	Scatter diagram showing the relation between VEGF and HCT	64
25	Relation between VEGF and risk factors for IUGR	66

Contents

	Pa	ge
List of Abbreviations		i
List of Tables		
List of Figures	• • •	iii
Introduction and Aim of the Work		1
Review of Literature		3
- Vascular Endothelial Growth Factor		3
- Intrauterine Growth Restriction		20
Subjects and Methods		36
Results		46
Discussion		67
Summary and Conclusion	•••	77
Recommendations	•••	81
References		82
Arabic Summary		

Introduction

Intrauterine growth restriction (IUGR, also called fetal growth restriction [FGR]) is the term used to designate a fetus that has not reached its growth potential because of genetic or environmental factors. This term should not be used to describe a constitutionally small, but otherwise healthy fetus (**Divon and Ferber, 2011**).

IUGR is often classified as reduced growth that is symmetric or asymmetric. Symmetric IUGR often has an earlier onset with equal affection of head circumference, weight and length. Asymmetric IUGR is often of late onset with relative head growth sparing (**Tsatsaris et al., 2003**).

Angiogenesis, a critical process for growth and development, is altered in intrauterine growth retardation (IUGR). Vascular endothelial growth factor (VEGF) is essential for both physiological and pathological angiogenesis (Boutsikou et al., 2005).

Oxygen is thought of be a major regulator of VEGF function, as VEGF and its receptor are up regulated by low oxygen pressure (Po₂) (**Ariadne et al., 2005**).

Aim of the study

The aim of this study is to investigate the relation between the level of vascular endothelial growth factor (VEGF) and intrauterine growth restriction (IUGR) as a marker of low O_2 tension.

Vascular Endothelial Growth Factor

Introduction:

Vascular Endothelial Growth Factor (VEGF) is involved in protein synthesis. They are important for vasculogenesis (De novo formation of blood vessels of the embryonic vascular system) and angiogenesis (Formation of blood vessels from pre-exiting vasculature) (Morimoto et al., 2007).

VEGF was originally defined as a tumor cell derived from Vascular Permeability Factor (Connolly et al., 1989). VEGF is also known as Vascular Permeability Factor (VPF) or Vasculotropin. It is a highly specific endothelial cell mitogen which promotes angiogenesis and has potent vascular permeability that enhances inflammatory properties (Vasile et al., 2001).

Types of VEGF

VEGF consists of seven members [VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F (snake venom VEGF svVEGF) and Placental Growth Factor (PGF)]. All have the same structure of (8 spaced cysteine residues) in the VEGF domain but differ in their biological and physical activities. (Roy et al., 2006).

1- Vascular Endothelial Growth Factor-VEGF-A:

Referred to as VEGF and also known as Vascular Permeability Factor (VPF), it is the key molecule of angiogenesis and vasculogenesis (proliferation, sprouting,

Review of Literature

migration and tube formation of endothelial cells) (Ferrara et al., 2003).

Its gene is located at chromosome 6p21.3.VEGF-A acts on the following receptors: Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1), Vascular Endothelial Growth Factor Receptor-2(VEGFR-2), Neuroplins-1 (NRP-1) and Neuroplins-2 (NRP-2) (Klagsburn et al., 2002).

Its action on VEGFR-1 mediates its role in pathological conditions while its action on VEGFR-2 mediates its role endothelial cell growth (**Takahashi & Shibuya,2005**).

It has 6 isoforms VEGF-A121, VEGF-A145, VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165b, VEGF-A183, VEGF-A189 & VEGF-A206 (Lange et al., 2003). These isoforms has distinct but overlapping functions (Roy et al., 2006).

2- Vascular Endothelial Growth Factor-B (VEGF-B):

Its gene is located on chromosome11q13. VEGF-B acts on VEGFR-1 & NRP-1. (**Roy et al., 2006**).

It has 2 isoformsVEGF-B167 and VEGF-B186 (Takahashi & Shibuya, 2005).

It has a role in vascular remodeling in cases of inflammatory arthritis and protection of brain from ischemia (Sun et al., 2004).

Review of Literature

3- Vascular Endothelial Growth Factor-C (VEGF-C):

Its gene located on chromosome 4q34.VEGF-C acts on VEGFR-2, VEGFR-3 (**Roy et al.,2006**).

It has a role in lymphanogenesis (Karkkainen et al., 2004).

4- Vascular Endothelial Growth Factor-D (VEGF-D):

Its gene is located on chromosome xp22.31. VEGF-D acts on VEGFR-2 and VEGFR-3 (**Roy et al., 2006**).

It has a role in both angiogenesis & lymphanogenesis (Baldwin et al., 2005).

5- Vascular Endothelial Growth Factor-E(VEGF-E):

It is detected in the genome of the parapox virus which occasionally infects humans. VEGF-E acts on VEGFR-2 and NRP-1 causing endothelial cell mitogenesis and vascular permeability (**Roy et al.,2006**).

6-Vascular Endothelial Growth Factor-F (VEGF-F):

VEGF-F including svVEGF from Bothrops insularis & Trimeresurns flavoviridis svVEGF (TfsvVEGF) from pit vipers in addition to Hypotensive Factor (HF), increasing capillary permeability protein (ICPP) and vamin from vipers. VEGF-F acts on VEGFR-1 and VEGFR-2 (**Takahashi and Shibuya**, 2005).

Review of Literature

7-Placental Growth Factor(PLGF):

It was first identified in the placenta but now it is known to be present in hearts, lungs and skeletal muscles. Its gene is located on chromosome14q24 (**Roy et al.,2006**).

It has 4 isoforms: PLGF-1 (PLGF131), PLGF-2 (PLGF152), PLGF-3 (PLGF203) and PLGF-4 (PLGF224). (Yang et al., 2003).

PLGF-1 acts on VEGFR-1 while PLGF-2 acts also on NRP-1 and NRP-2 (**Yla-Herttuala and Alitala, 2003**).

Its action is either by direct effect on endothelial cells or by augmenting the action of VEGF (Auterio et al., 2003).

In addition it has a significant role in arteriogenesis (a promising treatment of ischemic diseases) (**Pippe et al., 2003**).

Functions of VEGF

1-Endothelial cell proliferation:

Endothelial cell proliferation appears to involve VEGFR-2 mediated activation of the mitogen-activated protein kinase as well as protein kinase C pathway (**Zachary and Gliki, 2001**).

2-Endothelial cell activation:

It appears that VEGF has different effects on the endothelial cell morphology, cytoskeleton alterations and stimulation of endothelial cell migration and growth (**Dvork**, **2002**).

3-Endothelial cell survival:

It promotes cell survival by inhibiting apoptosis pathway, up-regulating antiapoptotic proteins such as Bl-2 and activating proteins like foal adhesion kinase (PI3K / AKT) which maintain endothelial cell survival despite apoptotic stimulai (**Dvork**, **2002**).

4-Migration and invasion:

Degradation of the basement membrane is an essential step for cell migration, invasion and angiogenesis. VEGF induces a number of enzymes and proteins important for degradation of the basement membrane (including matrix-degrading metalloproteinases, metalloproteinase interstitial collagenase and serine proteases like urokinase-type plasminogen activator and tissue-type plasminogen activator) (**Zachary and Gliki, 2001**).

5-Vascular permeability:

VEGF appears to be one the most potent vascular permeabilizing agents. It has an effect which is 50,000 times greater than Histamine. It increases permeability in a variety of vascular beds (skin, wound, peritoneal wall, mesentery and diaphragm) and can lead to pathologic conditions like malignant ascites and malignant pleural effusion (**Dvork**, 2002).

VEGF-A can induce production of Nitric Oxide that increase vascular permeability. Also it acts as apro-