STUDY OF NOVEL MARKERS FOR RHEUMATIC FEVER

Thesis

Submitted By

Ahmad Rashad Ahmad Ashour

M.B.B.Ch

In partial fulfillment of Master Degree In Pediatrics

Supervisors

Prof. Dr. Mohammad A. Hegazi

Professor of Pediatrics
Faculty of Medicine, Cairo University

Dr. Nashwa M. Mohammad

Lecturer of Pediatrics
Faculty of Medicine, Cairo University

Dr. Heba N. Ameen

Lecturer of clinical and chemical pathology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2013

Acknowledgement

I am greatly honored to express my deep gratitude and thanks to my **professor Dr.**Mohammad Ali Hegazi, Professor of Pediatrics, Faculty of Medicine, Cairo University, whose moral support cannot be praised with words and without his precious scientific guidance, constant support, patience and encouragement this work would not have been achieved.

I am greatly appreciated to **Dr.NashwaMostafa Mohammad**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her generous help, continuous advice and follow up of this study.

I am deeply grateful to **Dr. HebaNabeelAmeen,**Lecturer of clinical and chemical pathology, Faculty of Medicine, Cairo University, for her great work, cooperation, guidance and kindness.

Finally, deepest thanks and love to my family for their strong support and encouragement.

Abstract

Rheumatic fever is a chronic inflammatory multifactorial disease which may lead to rheumatic carditis and permanent valve damage. Our study included 50 patients with acute rheumatic fever and 50 patients with rheumatic heart disease; they were 58 females and 42 males ranging in age from 5 to 18 years. 50 age matched healthy children were includedas controls. Using ELISA technique, we studied the changes in the serum level of collagen I, collagen III, laminin and hyaluronic acid as new rheumatic fever markers more prominent and relevant forearly detection and diagnosis. The results were analyzed statistically and revealed that there is a highly significant increase in the serum level of collagen I, collagen III, laminin and hyaluronic acid in patients with acute rheumatic fever and rheumatic heart disease. Moreover, we found a highly significant statistical correlation between these biochemical markers and the clinical severity of the disease.

Key words:

Acute rheumatic fever- rheumatic heart disease- collagen type I- collagen type III – laminin- hyaluronic acid.

List of tables

Table	Page	
Table (1): Prevalence estimates of RHD extrapolated from studies in schoolchildren to the whole populations		
Table (2): Percentage of major and minor criteria by WHO region and for all reported studies		
Table (3): Comparison between cases of ARF, RHD and control subjects regarding history and clinical manifestations	65	
Table (4): Comparison between cases of ARF, RHD and control subjects regarding routine investigations	67	
Table (5): Comparison between cases of ARF, RHD and control subjects regarding the serum level of collagen I, collagen III, laminin and hyaluronic acid	68	
Table (6): Correlation of the 4 biochemical markers with each other in ARF, RHD and control groups	71	
Table (7): Relation between serum level of Collagen I and the clinical manifestations	76	
Table (8): Relation between the serum level of Collagen III and the clinical manifestations	79	
Table (9): Relation between serum level of laminin and the clinical manifestations	82	
Table (10): Relation between the serum level of hyaluronic acid (HA) and the clinical manifestations	85	
Table (11): Relation between serum level of Collagen I and other routine investigations	88	
Table (12): Relation between serum level of Collagen III and other routine investigations	91	
Table (13): Relation between serum level of laminin and other routine investigations	94	
Table (14): Relation between serum level of hyaluronic acid (HA) and other routine investigations	97	
Table (15): Correlation of the 4 biochemical markers with NYHA classification	100	

List of figures

Figure		
Figure (1): Trends of acute rheumatic fever incidence per 100,000 persons for each WHO region	11	
Figure (2): Trends of rheumatic heart disease prevalence per 1000 persons for each WHO region	12	
Figure (3): Cell surface structure of <i>Streptococcus pyogenes</i> and secreted products involved in virulence		
Figure (4): Polycyclic red borders of erythema marginatum in a febrile child withacute rheumatic fever	27	
Figure (5): Acute rheumatic fever: subcutaneous nodules, wrist	28	
Figure (6):Steps of Collagen Synthesis		
Figure (7): Structure of collagen molecule	39	
Figure (8):The structure of Laminin		
Figure (9):Laminin binding domains		
Figure (10):Structure of disaccharide repeating unit of HA	50	
Figure (11):percentage of the clinical presentation of ARF regarding the major criteria	66	
Figure (12): Comparison between cases of ARF, RHD and control subjects regarding the median and the interquartile range of the serum level of collagen I	69	
Figure (13): Comparison between cases of ARF, RHD and control subjects regarding the median and the interquartile range of the serum level of collagen III	69	

Figure (14): Comparison between cases of ARF, RHD and control subjects regarding the median and the interquartile range of the serum level of laminin	70
Figure (15): Comparison between cases of ARF, RHD and control subjects regarding the median and the interquartile range of the serum level of HA	70
Figure (16): Correlation between the serum level of collagen I and collagen III in ARF	72
Figure (17):Correlation between the serum level of collagen I and laminin in ARF	72
Figure (18):Correlation between the serum level of collagen I and HA in ARF	72
Figure (19): Correlation between the serum level of collagen III and laminin in ARF	73
Figure (20):Correlation between the serum level of collagen III and HA in ARF	73
Figure (21):Correlation between the serum level of laminin and HA in ARF	73
Figure (22):Correlation between the serum level of collagen I and collagen III in RHD	74
Figure (23):Correlation between the serum level of collagen I and laminin in RHD	74
Figure (24):Correlation between the serum level of collagen I and HA in RHD	74
Figure (25): Correlation between the serum level of collagen III and laminin in RHD	75
Figure (26):Correlation between the serum level of collagen III and HA in RHD	75
Figure (27):Correlation between the serum level of laminin and HA in RHD	75
Figure (28):Correlation between the serum level of collagen I and the clinical presentation	77

Figure (29):Correlation between the serum level of collagen I and LA penicillin intake	78
Figure (30):Correlation between the serum level of collagen III and the clinical presentation	80
Figure (31): Correlation between the serum level of collagen III and LA penicillin intake	81
Figure (32): Correlation between the serum level of laminin and the clinical presentation	83
Figure (33): Correlation between the serum level of laminin and LA penicillin intake	84
Figure (34): Correlation between the serum level of HA and the clinical presentation	86
Figure (35): Correlation between the serum level of HA and LA penicillin intake	87
Figure (36): Correlation between the serum level of collagen I and ASOT	89
Figure (37): Correlation between the serum level of collagen I and mitral regurgitation	90
Figure (38): Correlation between the serum level of collagen I with combined mitral and aortic regurgitation	90
Figure (39): Correlation between the serum level of collagen III and ASOT	92
Figure (40): Correlation between the serum level of collagen III and mitral regurgitation	93
Figure (41): Correlation between the serum level of collagen III with combined mitral and aortic regurgitation	93
Figure (42): Correlation between the serum level of laminin and ASOT	95
Figure (43): Correlation between the serum level of laminin and mitral regurgitation	96
Figure (44): Correlation between the serum level of laminin with combined mitral and aortic regurgitation	96

Figure (45): Correlation between the serum level of HA and ASOT	98
Figure (46): Correlation between the serum level of HA and mitral regurgitation	99
Figure (47): Correlation between the serum level of HA with combined mitral and aortic regurgitation	99
Figure (48): Correlation between the serum level of collagen I and NYHA classification in ARF	101
Figure (49): Correlation between the serum level of collagen III and NYHA classification in ARF	101
Figure (50): Correlation between the serum level of laminin and NYHA classification in ARF	101
Figure (51): Correlation between the serum level of HA and NYHA classification in ARF	102
Figure (52): Correlation between the serum level of collagen I and NYHA classification in RHD	102
Figure (53): Correlation between the serum level of collagen III and NYHA classification in RHD	102
Figure (54): Correlation between the serum level of laminin and NYHA classification in RHD	103
Figure (55): Correlation between the serum level of HA and NYHA classification in RHD	103

List of abbreviations

AR	Aortic Regurgitation
ARF	Acute Rheumatic Fever
ASOT	Anti Streptolysin O Titre
BM	Basement Membrane
CBC	Complete Blood Count
CFBs	Cardiac Fibroblasts
CICP	C- Terminal Propeptide Of Type I Collagen
CITP	Carboxy-Terminal Telopeptide Of Collagen Type I
CIIITP	Carboxy-Terminal Telopeptide Of Collagen Type III
COL I	Collagen Type I
COL III	Collagen Type III
CRP	C- Reactive Protein
ECG	Electrocardiogram
ECM	Extracellular Matrix
ELISA	Enzyme Linked Immunosorbant Assay
EM	Erythema Marginatum
ER	Endoplasmic Reticulum
ESR	Erythrocyte Sedimentation Rate
FACITs	Fibril-Associated Collagens With Interrupted Triple Helices
FS	Fractional Shortening
GAGs	Glycosaminoglycans
GAS	Group A Streptococci
GlcNAc	N-Acetyl-Beta-D-Glucosamine
HA	Hyaluronic Acid
HABP	Hyaluronic Acid Binding Protein
HF	Heart Failure
HLA	Human Leukocyte Antigen
HS	Highly Significant
IFN-g	Interferon Gamma
IL	Interleukin

IQR	Interquartile Range
LN	Laminin
MACITS	Membrane-Associated Collagens With Interrupted Triple Helices
MBL	Mannose Binding Lectin
MMPs	Matrix Metalloproteinases
MR	Mitral Regurgitation
MS	Mitral Stenosis
MULTIPLEXINs	Multiple Triple-Helix Domains And Interruptions
NITP	Amino-Terminal Telopeptide Of Collagen Type I
NIIITP	Amino-Terminal Telopeptide Of Collagen Type III
NS	Non Significant
NYHA	New York Heart Association
PARF	Peptide Associated With Rheumatic Fever
PGs	Proteoglycans
PICP	C-Terminus Of Procollagen I
PINP	N-Terminus Of Procollagen I
PIIIP	Pro Collagen III Peptide
PIIINP	N-Terminus Of Procollagen III
RER	Rough Endoplasmic Reticulum
RHD	Rheumatic Heart Disease
S	Significant
SD	Standard Deviation
SST	Serum Separator Tube
Th	T Helper
TIMPs	Tissue Inhibitors Of Metalloproteinases
TNF-α	Tumor Necrosis Factor Alpha
WHO	World Health Organization

Contents

Introduction	1
Aim of the work	3
Objectives	4
Review of literature	
Overview of rheumatic fever	
The collagens	
Laminin	
Hyaluronic acid	49
Patients and methods	53
Statistical analysis	64
Results	65
Discussion	104
Conclusion	115
Recommendations	116
English Summary	117
References	119
Appendix	139
Arabic summary	

Introduction

Liver cirrhosis [LC] is the final evolutive stage of any chronic liver disease and it is a condition prone to multiple complications because of portal hypertension. Development of esophageal varices [EV] is a major complication that may occur in up to 90% of cirrhotic patients (*Jensen*, 2002).

Variceal bleeding is a life-threatening event that has an incidence of 5% in patients with small EV and up to 15% in those with large esophageal varices [LEV]. Mortality per bleeding episode is around 10-20% (*Carbonell et al., 2004*), and one year survival is only 63%. Therefore, screening for EV in LC patients is a strong recommendation in all consensus statements (*de Franchis, 2005*).

The current screening method is endoscopy at 2-3 years in patients without EV, and at 1-2 years in those with small EV. This approach is, however, invasive, poorly accepted by patients and expensive. This is why the selection of patients with LEV at high risk for bleeding has become an issue of growing importance. In this respect, several clinical, biological, ultrasonographic and scores methods have been proposed [and some of them validated] as noninvasive alternatives to endoscopy (*de Franchis.*, 2008).

Based on the concept that the development of portal hypertension is due to liver fibrosis, as the most important factor contributing to the increased hepatic resistance, noninvasive serum markers of liver fbrosis have been tested as predictors of EV in cirrhotic patients with promising results. The most validated is the FibroTest, which is not currently widely available because of its cost and complexity (*Stefanescu et al.*, *2011*).

Aim of the Work

The hypothesis behind our study is that common tests previously validated as predictors of liver fibrosis, such as APRI, Fib-4, Forns Index and Lok Score can also be used to predict the presence of esophageal varices. Our aim was to evaluate the performance of the above mentioned fibrosis scores and the fibroscan in diagnosing and grading of esophageal varices.

Pathophysiology of Portal Hypertension

Anatomical Background:

The Liver Vasculature:

The liver is a richly perfused organ receiving approximately 25% of the cardiac output. About 75% of hepatic blood flow (rich in nutrients but poorly oxygenated) is supplied by the portal vein. The remainder of the blood supply (oxygen rich) is provided by the hepatic artery. The intrahepatic vasculature is composed of portal venules, hepatic arterioles, lymphatics, hepatic sinusoids, and central venules (*Mc Cuskey, 2000*).

The hepatic sinusoid, which is the principal site of blood flow regulation, is the narrowest vascular structure within the liver; the highest vascular resistance occurs in the sinusoids (*Bhunchet and Wake*, 1998). The hepatic sinusoid is the vital site for transvascular exchange between blood and hepatocytes. The sinusoidal surface of the hepatocytes is separated from blood by fenestrated sinusoidal endothelial cells lining the sinusoid, Kuppfer cells (liver macrophages) protruding into the lumen of the sinusoid, Pit cells (liver specific natural killer cells) and hepatic stellate cells (HSC) (*Burt et al.*,1993). HSC may play a role in blood flow regulation in the normal liver. The first direct evidence was provided by in vivo microscopy in normal rat liver (*Bauer et al.*, 2000).

Anatomy of the Portal Venous System:

The portal vein begins at the junction of the splenic vein (SV) and the superior mesenteric vein (SMV), immediately posterior to the pancreatic neck at about the level of L2. From its origin, it courses superiorly and toward the right passing behind the first part of the duodenum and anterior to the inferior vena cava (IVC). After it enters the liver, the PV divides into right and left branches that re-divide into

smaller branches to terminate in the sinusoidal network of the liver (Fruechte and Zwiebel, 1992).

The ligamentum teres joins the left branch of the portal vein containing the umbilical vein within it. The left gastric vein (coronary vein) joins the portal vein near its origin (or the splenic vein in 16%). The inferior mesenteric vein draining the left colon and rectum joins the main splenic vein usually in its medial third. The main splenic vein is formed at the splenic hilum by the convergence of the splenic veins (5-15), joined by the short gastric veins (*Fruechte and Zwiebel*, 1992).

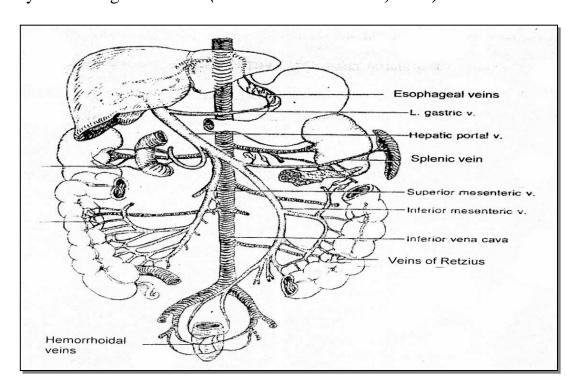


Figure (1-1): The anatomy of the portal venous system (Sherlock & Dooley, 2002)

Portosystemic Collaterals:

It is necessary that the portal pressure gradient reaches a value of 12 mm Hg for the formation of collateral channels to the vena cava system. Closure of the collaterals can occur gradually when its resistance exceeds that of the porto-hepatic bed as after porto-caval shunt surgery (*Garcia-Tsao*, 1997). Normally 100% of the portal blood flow can be